A STUDY ON OPERATIONS OF BIPOLAR NEUTROSOPHIC CUBIC FUZZY GRAPHS

M.Vijaya

Research Advisor, PG and Research Department of Mathematics,Marudupandiyar College,
Thanjavur - 613403,Tamilnadu, India,(Affiliated to Bharathidasan University,Trichirappalli)

K.Kalaiyarasan

Research Scholar,PG and Research Department of Mathematics,Marudupandiyar College,
Thanjavur - 613403,Tamilnadu,India,(Affiliated to Bharathidasan University,Trichirappalli)

Abstract

In this paper we introduce the idea of bipolar neutrosophic cubic fuzzy graphs. We discuss fundamental binary operations like Cartesian product, composition of bipolar neutrosophic cubic fuzzy graphs. We provide some results related with bipolar neutrosophic cubic fuzzy graphs.

INTRODUCTION

In 1975 Rosenfeld [7] introduced fuzzy graphs based on fuzzy set.Fuzzy graph theory plays essential roles in various discipines including information theory, neural networks,clustering problems and control theory,etc.Fuzzy models is more compatiable to the systemin compare with classical mode.Bhattacharya [5] gave some remarks on fuzzy graphs. Some operations on fuzzy graphs were introduced by mordeson and peng[6].Akram et al. has introduced several new concepts including bipolar fuzzy graphs,regular bipolar fuzzy graphs, irregular bipolar fuzzy graphs etc.In this paper, we present certain operations on bipolar fuzzy graphs structures and investigate some of their properties.

1. Basic Definitions

Definition 1.1 Let X be a space of points with generic elements in X denoted by x. A neutrosophic fuzzy set A is characterized by truth-membership function $\mu_{A T}(x)$, an indeterminacy-membership function $\lambda_{A I}(x)$ a falsity - membership function $\gamma_{A F}(x)$.

For each point x in $X \mu_{A T}(x), \lambda_{A I}(x), \gamma_{A F}(x) \in[0,1]$ A neutrosophic fuzzy set A can be written as

$$
A=\left\{<x: \mu_{A T}(x), \lambda_{A I}(x), \gamma_{A F}(x)>, x \in X\right\}
$$

Definition 1.2 Let X be a space of points with generic elements in X denoted by x. A neutrosophic cubic fuzzy set in X is a pair $G=(M, N)$ where $M=\left\{<x: \mu_{M T}(x), \lambda_{M I}(x), \gamma_{M F}(x)>, x \in X\right\}$ is an interval neutrosophic fuzzy set in X and $N=\left\{<x: \mu_{N T}(x), \lambda_{N I}(x), \gamma_{N F}(x)>, x \in X\right\}$ is a neutrosophic fuzzy set in X.

Definition 1.3 Let $G^{*}=(V, E)$ be a fuzzy graph. By neutrosophic cubic fuzzy graph of G^{*}, we mean a pair $G=(M, N)$ where $M=(A, B)=\left(\left(\mu_{A T}, \mu_{B T}\right),\left(\lambda_{A I}, \lambda_{B I}\right),\left(\gamma_{A F}, \gamma_{B F}\right)\right)$ is the neutrosophic cubic fuzzy set representation of vertex set V and $N=(C, D)=\left(\left(\mu_{C T}, \mu_{D T}\right),\left(\lambda_{C I}, \lambda_{D I}\right),\left(\gamma_{C F}, \gamma_{D F}\right)\right)$ is the neutrosophic cubic fuzzy set representation of edge set E such that
(i) $\quad\left(\mu_{T C}\left(x_{i} y_{i}\right) \leq r \min \left\{\mu_{A T}\left(x_{i}\right), \mu_{A T}\left(y_{i}\right)\right\}, \mu_{D T}\left(x_{i} y_{i}\right) \leq \max \left\{\mu_{B T}\left(x_{i}\right), \mu_{B T}\left(y_{i}\right)\right\}\right)$
(ii) $\quad\left(\lambda_{I C}\left(x_{i} y_{i}\right) \leq r \min \left\{\lambda_{A I}\left(x_{i}\right), \lambda_{A I}\left(y_{i}\right)\right\}, \lambda_{D I}\left(x_{i} y_{i}\right) \leq \max \left\{\lambda_{B I}\left(x_{i}\right), \lambda_{B I}\left(y_{i}\right)\right\}\right)$
(iii) $\quad\left(\gamma_{F C}\left(x_{i} y_{i}\right) \leq r \min \left\{\gamma_{A F}\left(x_{i}\right), \gamma_{A F}\left(y_{i}\right)\right\}, \gamma_{D F}\left(x_{i} y_{i}\right) \leq \max \left\{\gamma_{B F}\left(x_{i}\right), \gamma_{B F}\left(y_{i}\right)\right\}\right)$

2. Bipolar Neutrosophic Cubic Fuzzy Graphs(BNCFG)

Definition 2.1 Let X be a space of points with generic elements in X denoted by x. A Bipolar neutrosophic cubic fuzzy set in X is a pair $G=\left(\left(M^{P}, N^{P}\right),\left(M^{N}, N^{N}\right)\right)$ is defined as

$$
\begin{aligned}
& M^{P}=\left\{<x^{P}: \mu_{M T}^{P}(x), \lambda_{M I}^{P}(x), \gamma_{M F}^{P}(x)>/ x \in X\right\} \\
& M^{N}=\left\{<x^{N}: \mu_{M T}^{N}(x), \lambda_{M I}^{N}(x), \gamma_{M F}^{N}(x)>/ x \in X\right\}
\end{aligned}
$$

is an interval neutrosophic fuzzy set in X and

$$
\begin{aligned}
& N^{P}=\left\{<x^{P}: \mu_{N T}^{P}(x), \lambda_{N I}^{P}(x), \gamma_{N F}^{P}(x)>/ x \in X\right\} \\
& N^{N}=\left\{<x^{N}: \mu_{N T}^{N}(x), \lambda_{N I}^{N}(x), \gamma_{N F}^{N}(x)>/ x \in X\right\}
\end{aligned}
$$

is a neutrosophic fuzzy set in X, where $\mu_{M T}^{P}(x), \lambda_{M I}^{P}(x), \gamma_{M F}^{P}(x) \rightarrow[0,1]$ and $\mu_{M T}^{N}(x), \lambda_{M I}^{N}(x), \gamma_{M F}^{N}(x) \rightarrow$ [$-1,0]$.

Definition 2.2

Let $G^{*}=(V, E)$ be a fuzzy graph. By a Bipolar neutrosophic cubic fuzzy graph of G^{*}. We mean a pair $G=\left(\left(M^{P}, N^{P}\right),\left(M^{N}, N^{N}\right)\right)$ where

$$
\begin{aligned}
& M^{P}=(A, B)=\left(\left(\mu_{A T}^{P}, \mu_{B T}^{P}\right),\left(\lambda_{A l}^{P}, \lambda_{B I}^{P}\right),\left(\gamma_{A F}^{P}, \gamma_{B F}^{P}\right)\right) \\
& M^{N}=(A, B)=\left(\left(\mu_{A T}^{N}, \mu_{B T}^{N}\right),\left(\lambda_{A l}^{N}, \lambda_{B I}^{N}\right),\left(\gamma_{A F}^{N}, \gamma_{B F}^{N}\right)\right)
\end{aligned}
$$

is the neutrosophic cubic fuzzy set representation of vertex set V and

$$
\begin{aligned}
& N^{P}=(C, D)=\left(\left(\mu_{C T}^{P}, \mu_{D T}^{P}\right),\left(\lambda_{C I}^{P}, \lambda_{D I}^{P}\right),\left(\gamma_{C F}^{P}, \gamma_{D F}^{P}\right)\right) \\
& N^{N}=(C, D)=\left(\left(\mu_{C T}^{N}, \mu_{D T}^{N}\right),\left(\lambda_{C I}^{N}, \lambda_{D I}^{N}\right),\left(\gamma_{C F}^{N}, \gamma_{D F}^{N}\right)\right)
\end{aligned}
$$

is the neutrosophic cubic fuzzy set representation of edge set E such that
(i) $\quad\left(\mu_{T C}^{P}\left(x_{i} y_{i}\right) \leq r \min \left\{\mu_{A T}^{P}\left(x_{i}\right), \mu_{A T}^{P}\left(y_{i}\right)\right\}, \mu_{D T}^{P}\left(x_{i} y_{i}\right) \leq \max \left\{\mu_{B T}^{P}\left(x_{i}\right), \mu_{B T}^{P}\left(y_{i}\right)\right\}\right)$ $\left(\mu_{T C}^{N}\left(x_{i} y_{i}\right) \geq r \max \left\{\mu_{A T}^{N}\left(x_{i}\right), \mu_{A T}^{N}\left(y_{i}\right)\right\}, \mu_{D T}^{N}\left(x_{i} y_{i}\right) \geq \min \left\{\mu_{B T}^{N}\left(x_{i}\right), \mu_{B T}^{N}\left(y_{i}\right)\right\}\right)$

$$
\begin{equation*}
\left(\lambda_{I C}^{P}\left(x_{i} y_{i}\right) \leq r \max \left\{\lambda_{A I}^{P}\left(x_{i}\right), \lambda_{A I}^{P}\left(y_{i}\right)\right\}, \lambda_{D I}^{P}\left(x_{i} y_{i}\right) \leq \min \left\{\lambda_{B I}^{P}\left(x_{i}\right), \lambda_{B I}^{P}\left(y_{i}\right)\right\}\right) \tag{ii}
\end{equation*}
$$

$$
\left(\lambda_{I C}^{N}\left(x_{i} y_{i}\right) \geq r \max \left\{\lambda_{A I}^{N}\left(x_{i}\right), \lambda_{A I}^{N}\left(y_{i}\right)\right\}, \lambda_{D I}^{N}\left(x_{i} y_{i}\right) \geq \min \left\{\lambda_{B I}^{N}\left(x_{i}\right), \lambda_{B I}^{N}\left(y_{i}\right)\right\}\right)
$$

(iii) $\quad\left(\gamma_{F C}^{P}\left(x_{i} y_{i}\right) \leq r \max \left\{\gamma_{A F}^{P}\left(x_{i}\right), \gamma_{A F}^{P}\left(y_{i}\right)\right\}, \gamma_{D F}^{P}\left(x_{i} y_{i}\right) \leq \min \left\{\gamma_{B F}^{P}\left(x_{i}\right), \gamma_{B F}^{P}\left(y_{i}\right)\right\}\right)$

$$
\left(\gamma_{F C}^{N}\left(x_{i} y_{i}\right) \geq r \max \left\{\gamma_{A F}^{N}\left(x_{i}\right), \gamma_{A F}^{N}\left(y_{i}\right)\right\}, \gamma_{D F}^{N}\left(x_{i} y_{i}\right) \geq \min \left\{\gamma_{B F}^{N}\left(x_{i}\right), \gamma_{B F}^{N}\left(y_{i}\right)\right\}\right)
$$

3. Operations of Two Bipolar Neutrosophic Cubic Fuzzy Graphs

Definition 3.1 Let $G_{1}=\left(\left(M_{1}{ }^{P}, N_{1}{ }^{P}\right),\left(M_{1}{ }^{N}, N_{1}{ }^{N}\right)\right)$ be a bipolar neutrosophic cubic fuzzy graph of $G_{1}^{*}=\left(\left(V_{1}^{P}, E_{1}^{P}\right),\left(V_{1}^{N}, E_{1}^{N}\right)\right)$ and $G_{2}=\left(\left(M_{2}{ }^{P}, N_{2}{ }^{P}\right),\left(M_{2}{ }^{N}, N_{2}{ }^{N}\right)\right)$ be a bipolar neutrosophic cubic fuzzy graph of $G_{2}^{*}=\left(\left(V_{2}^{P}, E_{2}^{P}\right),\left(V_{2}^{N}, E_{2}^{N}\right)\right)$. The Cartesian product of G_{1} and G_{2} is denoted by

$$
\left.\left.\begin{array}{c}
G_{1} \times G_{2}=\left(\left(\left(M_{1}{ }^{P} \times M_{2}^{P}\right),\left(M_{1}{ }^{N} \times M_{2}{ }^{N}\right)\right),\left(\left(N_{1}^{P} \times N_{2}^{P}\right),\left(N_{1}{ }^{N} \times N_{2}{ }^{N}\right)\right)\right) \\
=\left(\left(\left(A_{1}^{P}, B_{1}^{P}\right),\left(A_{1}^{N}, B_{1}^{N}\right)\right) \times\left(\left(A_{2}^{P}, B_{2}^{P}\right),\left(A_{2}^{N}, B_{2}^{N}\right)\right),\left(\left(C_{1}^{P}, D_{1}^{P}\right),\left(C_{1}^{N}, D_{1}^{N}\right)\right) \times\left(\left(C_{2}^{P}, D_{2}^{P}\right),\left(C_{2}^{N}, D_{2}^{N}\right)\right)\right) \\
\left\{\left(\left(\left(\tilde{\mu}_{T A_{1} \times T A_{2}}^{P}, \tilde{\mu}_{T A_{1} \times T A_{2}}^{N}\right),\left(\tilde{\mu}_{T B_{1} \times T B_{2}}^{P}, \tilde{\mu}_{T B_{1} \times T B_{2}}^{N}\right)\right),\left(\left(\tilde{\lambda}_{I A_{1} \times I A_{2}}^{P}, \tilde{\lambda}_{I A_{1} \times I A_{2}}^{N}\right),\left(\tilde{\lambda}_{I B_{1} \times I B_{2}}^{P}, \tilde{\lambda}_{I B_{1} \times I B_{2}}^{N}\right)\right),\right.\right. \\
\left(\left(\tilde{\gamma}_{F A_{1} \times F A_{2}}^{P}, \tilde{\gamma}_{F A_{1} \times F A_{2}}^{N}\right),\left(\tilde{\gamma}_{F B_{1} \times F B_{2}}^{P}, \tilde{\gamma}_{F B_{1} \times F B_{2}}^{N}\right)\right)
\end{array}\right)\right\} .\left(\begin{array}{c}
\left(\left(\tilde{\mu}_{T C_{1} \times T C_{2}}^{P}, \tilde{\mu}_{T C_{1} \times T C_{2}}^{N}\right),\left(\tilde{\mu}_{T D_{1} \times T D_{2}}^{P}, \tilde{\mu}_{T D_{1} \times T D_{2}}^{N}\right)\right),\left(\left(\tilde{\lambda}_{I C_{1} \times I C_{2}}^{P}, \tilde{\lambda}_{I C_{1} \times I C_{2}}^{N}\right),\left(\tilde{\lambda}_{I D_{1} \times I D_{2}}^{P},{\tilde{\lambda} I I D_{1} \times I D_{2}}_{N}\right)\right), \\
\left(\left(\tilde{\gamma}_{F C_{1} \times F C_{2}}^{P}, \tilde{\gamma}_{F C_{1} \times F C_{2}}^{N}\right),\left(\tilde{\gamma}_{F D_{1} \times F D_{2}}^{P}, \tilde{\gamma}_{F D_{1} \times F D_{2}}^{N}\right)\right)
\end{array}\right.
$$

and is defined as follows

$$
\begin{equation*}
\binom{\left(\tilde{\mu}_{T A_{1} \times T A_{2}}^{P}(u, v)=r^{P} \min \left(\tilde{\mu}_{T A_{1}}^{P}(u), \tilde{\mu}_{T A_{2}}^{P}(v)\right), \tilde{\mu}_{T B_{1} \times T B_{2}}^{P}(u, v)=\max \left(\tilde{\mu}_{T B_{1}}^{P}(u), \tilde{\mu}_{T B_{2}}^{P}(v)\right)\right),}{\left(\tilde{\mu}_{T A_{1} \times T A_{2}}^{N}(u, v)=r^{N} \max \left(\tilde{\mu}_{T A_{1}}^{N}(u), \tilde{\mu}_{T A_{2}}^{N}(v)\right), \tilde{\mu}_{T B_{1} \times T B_{2}}^{N}(u, v)=\min \left(\tilde{\mu}_{T B_{1}}^{N}(u), \tilde{\mu}_{T B_{2}}^{N}(v)\right)\right)} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\binom{\left(\tilde{\lambda}_{I A_{1} \times I A_{2}}^{P}(u, v)=r^{P} \min \left(\tilde{\lambda}_{I A_{1}}^{P}(u), \tilde{\lambda}_{I A_{2}}^{P}(v)\right), \tilde{\lambda}_{I B_{1} \times I B_{2}}^{P}(u, v)=\max \left(\tilde{\lambda}_{I B_{1}}^{P}(u), \tilde{\lambda}_{I B_{2}}^{P}(v)\right)\right),}{\left(\tilde{\lambda}_{I A_{1} \times I A_{2}}^{N}(u, v)=r^{N} \max \left(\tilde{\lambda}_{I A_{1}}^{N}(u), \tilde{\lambda}_{I A_{2}}^{N}(v)\right), \tilde{\lambda}_{I B_{1} \times I B_{2}}^{N}(u, v)=\min \left(\tilde{\lambda}_{I B_{1}}^{N}(u), \tilde{\lambda}_{I B_{2}}^{N}(v)\right)\right)} \tag{ii}
\end{equation*}
$$

$$
\binom{\left(\tilde{\gamma}_{F A_{1} \times F A_{2}}^{P}(u, v)=r^{P} \max \left(\tilde{\gamma}_{F A_{1}}^{P}(u), \tilde{\gamma}_{F A_{2}}^{P}(v)\right), \tilde{\gamma}_{F B_{1} \times F B_{2}}^{P}(u, v)=\min \left(\tilde{\gamma}_{F B_{1}}^{P}(u), \tilde{\gamma}_{F B_{2}}^{P}(v)\right)\right),}{\left(\tilde{\gamma}_{F A_{1} \times F A_{2}}^{N}(u, v)=r^{N} \min \left(\tilde{\gamma}_{F A_{1}}^{N}(u), \tilde{\gamma}_{F A_{2}}^{N}(v)\right), \tilde{\gamma}_{F B_{1} \times F B_{2}}^{N}(u, v)=\max \left(\tilde{\gamma}_{F B_{1}}^{N}(u), \tilde{\gamma}_{F B_{2}}^{N}(v)\right)\right)}
$$

(iv) $\quad\left(\left(\left(\tilde{\mu}_{T C_{1} \times T C_{2}}^{P}\left(\left(u, v_{1}\right)\left(u, v_{2}\right)\right)=r^{P} \min \left(\tilde{\mu}_{T A_{1}}^{P}(u), \tilde{\mu}_{T C_{2}}^{P}\left(v_{1} v_{2}\right)\right)\right),\left(\tilde{\mu}_{T C_{1} \times T C_{2}}^{N}\left(\left(u, v_{1}\right)\left(u, v_{2}\right)\right)=\right.\right.\right.$ rNmax \quad TA1Nu, \quad TC2Nv1v2, \quad TD1×TD2Pu,v1u,v2=max $\mu T B 1 P u, \quad \mu T D 2 P v 1 v 2$, $\mu T D 1 \times T D 2 N u, v 1 u, v 2=\min \mu T B 1 N u, \mu T D 2 N v 1 v 2$
$\forall v \in V_{2}$ and $u_{1} u_{2} \in E_{1}$
(v) $\quad\left(\left(\left(\tilde{\lambda}_{I C_{1} \times I C_{2}}^{P}\left(\left(u, v_{1}\right)\left(u, v_{2}\right)\right)=r^{P} \min \left(\tilde{\lambda}_{I A_{1}}^{P}(u), \tilde{\lambda}_{I C_{2}}^{P}\left(v_{1} v_{2}\right)\right)\right),\left(\tilde{\lambda}_{I C_{1} \times I C_{2}}^{N}\left(\left(u, v_{1}\right)\left(u, v_{2}\right)\right)=\right.\right.\right.$ rNmaxגIA1Nu,

AIC2Nv1v2,
(vi) $\quad\left(\left(\left(\tilde{\gamma}_{F C_{1} \times F C_{2}}^{P}\left(\left(u, v_{1}\right)\left(u, v_{2}\right)\right)=r^{P} \max \left(\tilde{\gamma}_{F A_{1}}^{P}(u), \tilde{\gamma}_{F C_{2}}^{P}\left(v_{1} v_{2}\right)\right)\right),\left(\tilde{\gamma}_{F C_{1} \times F C_{2}}^{N}\left(\left(u, v_{1}\right)\left(u, v_{2}\right)\right)=\right.\right.\right.$ $r N \min \gamma F A 1 N u, \quad \gamma F C 2 N v 1 v 2, \quad \gamma F D 1 \times F D 2 P u, v 1 u, v 2=\min \gamma F B 1 P u, \quad \gamma F D 2 P v 1 v 2$, $\gamma F D 1 \times F D 2 N u, v 1 u, v 2=\max \gamma F B 1 N u, \gamma F D 2 N v 1 v 2$
$\forall v \in V_{2}$ and $u_{1} u_{2} \in E_{1}$
(vii) $\quad\left(\left(\left(\tilde{\mu}_{T C_{1} \times T C_{2}}^{P}\left(\left(u_{1}, v\right)\left(u_{2}, v\right)\right)=r^{P} \min \left(\tilde{\mu}_{T C_{1}}^{P}\left(u_{1} u_{2}\right), \tilde{\mu}_{T A_{2}}^{P}(v)\right)\right),\left(\tilde{\mu}_{T C_{1} \times T C_{2}}^{N}\left(\left(u_{1}, v\right)\left(u_{2}, v\right)\right)=\right.\right.\right.$ $r N \max \mu T C 1 N u 1 u 2, \quad \mu T A 2 N v, \quad \mu T D 1 \times T D 2 P u 1, v u 2, v=\max \mu T D 1 P u 1 u 2, \quad \mu T B P v$, $\mu T D 1 \times T D 2 N u 1, v u 2, v=\min \mu T D 1 N u 1 u 2, \mu T B 2 N v$
(viii) $\quad\left(\left(\left(\tilde{\lambda}_{I C_{1} \times I C_{2}}^{P}\left(\left(u_{1}, v\right)\left(u_{2}, v\right)\right)=r^{P} \min \left(\tilde{\lambda}_{I C_{1}}^{P}\left(u_{1} u_{2}\right), \tilde{\lambda}_{I A_{2}}^{P}(v)\right)\right),\left(\tilde{\lambda}_{I C_{1} \times I C_{2}}^{N}\left(\left(u_{1}, v\right)\left(u_{2}, v\right)\right)=\right.\right.\right.$ $r N \max A I C 1 N u 1 u 2, \quad \lambda I A 2 N v, \quad$ AID1×ID2Pu1,vu2,v=maxAID1Pu1u2, \quad IIB2Pv, $\lambda I D 1 \times I D 2 N u 1, v u 2, v=\min \lambda I D 1 N u 1 u 2, \lambda I B 2 N v$
(ix) $\quad\left(\left(\left(\tilde{\gamma}_{F C_{1} \times F C_{2}}^{P}\left(\left(u_{1}, v\right)\left(u_{2}, v\right)\right)=r^{P} \max \left(\tilde{\gamma}_{F C_{1}}^{P}\left(u_{1} u_{2}\right), \tilde{\gamma}_{F A_{2}}^{P}(v)\right)\right),\left(\tilde{\gamma}_{F C_{1} \times F C_{2}}^{N}\left(\left(u_{1}, v\right)\left(u_{2}, v\right)\right)=\right.\right.\right.$ $r N \min \gamma F C 1 N u 1 u 2, \quad \gamma F A 2 N v, \quad \gamma F D 1 \times F D 2 P u 1, v u 2, v=\min \gamma F D 1 P u 1 u 2, \quad \gamma F B 2 P v$, $\gamma F D 1 \times F D 2 N u 1, v u 2, v=\max \gamma F D 1 N u 1 u 2, \gamma F B 2 N v$
$\forall(u, v) \in\left(V_{1}, V_{2}\right)$

Example 3.2

Let $G_{1}=\left(\left(M_{1}{ }^{P}, N_{1}{ }^{P}\right),\left(M_{1}{ }^{N}, N_{1}{ }^{N}\right)\right)$ be a bipolar neutrosophic cubic fuzzy graph of $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ where $v_{1}=\{u, v, w\}, E=\{u v, v w, u w\}$

$$
\begin{gathered}
\{u,([0.1,0.1], 0.4),([0.3,0.4], 0.2),([0.5,0.6], 0.1)\} \\
M_{1}^{P}=\langle\{v,([0.1,0.3], 0.1),([0.4,0.5], 0.3),([0.1,0.1], 0.2)\}\rangle \\
\{w,([0.2,0.3], 0.1),([0.1,0.2], 0.6),([0.3,0.5], 0.2)\}
\end{gathered}
$$

$$
\begin{gathered}
\{u v,([0.1,0.1], 0.4),([0.3,0.4], 0.2),([0.5,0.6], 0.1)\} \\
N_{1}{ }^{P}=\langle\{v w,([0.1,0.3], 0.1),([0.1,0.2], 0.6),([0.3,0.5], 0.2)\}\rangle \\
\{u w,([0.2,0.3], 0.1),([0.1,0.2], 0.6),([0.5,0.6], 0.1)\} \\
\{u,([-0.1,-0.1],-0.4),([-0.3,-0.4],-0.2),([-0.5,-0.6],-0.1)\} \\
M_{1}{ }^{N}=\langle\{v,([-0.1,-0.3],-0.1),([-0.4,-0.5],-0.3),([-0.1,-0.1],-0.2)\}\rangle \\
\{w,([-0.2,-0.3],-0.1),([-0.1,-0.2],-0.6),([-0.3,-0.5],-0.2)\} \\
\{u v,([-0.1,-0.1],-0.4),([-0.3,-0.4],-0.2),([-0.5,-0.6],-0.1)\} \\
N_{1}^{N}= \\
\langle\{v w,([-0.1,-0.3],-0.1),([-0.1,-0.2],-0.6),([-0.3,-0.5],-0.2)\}\rangle \\
\\
\{u w,([-0.2,-0.3],-0.1),([-0.1,-0.2],-0.6),([-0.5,-0.6],-0.1)\}
\end{gathered}
$$

and $G_{2}=\left(\left(M_{2}{ }^{P}, N_{2}{ }^{P}\right),\left(M_{2}{ }^{N}, N_{2}{ }^{N}\right)\right)$ be a bipolar neutrosophic cubic fuzzy graph of $G_{2}^{*}=\left(V_{2}, E_{2}\right)$ where $V_{1}=\{a, v, c\}$ and $E_{2}=\{a b, b c, a c\}$

$$
\begin{gathered}
\{a,([0.6,0.7], 0.5),([0.1,0.3], 0.4),([0.2,0.3], 0.6)\} \\
M_{2}{ }^{P}=\langle\{b,([0.1,0.2], 0.3),([0.5,0.6], 0.2),([0.8,0.9], 0.4)\}\rangle \\
\{c,([0.3,0.4], 0.1),([0.2,0.3], 0.1),([0.5,0.6], 0.3)\} \\
\{a b,([0.1,0.2], 0.5),([0.1,0.3], 0.4),([0.8,0.9], 0.4)\} \\
N_{2}^{P}=\langle\{b c,([0.1,0.2], 0.3),([0.2,0.3], 0.2),([0.8,0.9], 0.3)\}\rangle \\
\{a c,([0.3,0.4], 0.5),([0.1,0.3], 0.4),([0.5,0.6], 0.3)\} \\
\{a,([-0.6,-0.7],-0.5),([-0.1,-0.3],-0.4),([-0.2,-0.3],-0.6)\} \\
M_{2}^{N}=\langle\{b,([-0.1,-0.2],-0.3),([-0.5,-0.6],-0.2),([-0.8,-0.9],-0.4)\}\rangle \\
\{c,([-0.3,-0.4],-0.1),([-0.2,-0.3],-0.1),([-0.5,-0.6],-0.3)\} \\
\{a b,([-0.1,-0.2],-0.5),([-0.1,-0.3],-0.4),([-0.8,-0.9],-0.4)\} \\
N_{2}^{N}=\langle\{b c,([-0.1,-0.2],-0.3),([-0.2,-0.3],-0.2),([-0.8,-0.9],-0.3)\}\rangle \\
\{a c,([-0.3,-0.4],-0.5),([-0.1,-0.3],-0.4),([-0.5,-0.6],-0.3)\}
\end{gathered}
$$

then $G_{1} \times G_{2}$ is a bipolar neutrosophic cubic fuzzy graph of $G_{1}^{*} \times G_{2}^{*}$,
where $V_{1} \times V_{2}=\{(u, a),(u, b),(u, c),(v, a),(v, b),(v, c),(w, a),(w, b),(w, c)\}$ and
$\{(u, a),([0.1,0.1], 0.5),([0.1,0.3], 0.4),([0.5,0.6], 0.1)\}$
$\{(u, b),([0.1,0.1], 0.4),([0.3,0.4], 0.2),([0.8,0.9], 0.1)\}$
$\{(u, c),([0.1,0.1], 0.6),([0.2,0.3], 0.2),([0.5,0.6], 0.1)\}$
$\{(v, a),([0.1,0.3], 0.5),([0.1,0.3], 0.4),([0.2,0.3], 0.2)\}$
$M_{1}^{P} \times M_{2}^{P}=\langle\{(v, b),([0.1,0.2], 0.3),([0.4,0.5], 0.3),([0.8,0.9], 0.2)\}\rangle$
$\{(v, c),([0.1,0.3], 0.1),([0.2,0.3], 0.3),([0.5,0.6], 0.2)\}$
$\{(w, a),([0.2,0.3], 0.5),([0.1,0.2], 0.6),([0.3,0.5], 0.2)\}$
$\{(w, b),([0.1,0.2], 0.3),([0.1,0.2], 0.6),([0.8,0.9], 0.2)\}$
$\{(w, c),([0.2,0.3], 0.1),([0.1,0.2], 0.6),([0.5,0.6], 0.2)\}$
$\{(u, a),([-0.1,-0.1],-0.5),([-0.1,-0.3],-0.4),([-0.5,-0.6],-0.1)\}$
$\{(u, b),([-0.1,-0.1],-0.4),([-0.3,-0.4],-0.2),([-0.8,-0.9],-0.1)\}$
$\{(u, c),([-0.1,-0.1],-0.6),([-0.2,-0.3],-0.2),([-0.5,-0.6],-0.1)\}$
$\{(v, a),([-0.1,-0.3],-0.5),([-0.1,-0.3],-0.4),([-0.2,-0.3],-0.2)\}$
$M_{1}^{N} \times M_{2}^{N}=\langle\{(v, b),([-0.1,-0.2],-0.3),([-0.4,-0.5],-0.3),([-0.8,-0.9],-0.2)\}\rangle$
$\{(v, c),([-0.1,-0.3],-0.1),([-0.2,-0.3],-0.3),([-0.5,-0.6],-0.2)\}$
$\{(w, a),([-0.2,-0.3],-0.5),([-0.1,-0.2],-0.6),([-0.3,-0.5],-0.2)\}$
$\{(w, b),([-0.1,-0.2],-0.3),([-0.1,-0.2],-0.6),([-0.8,-0.9],-0.2)\}$
$\{(w, c),([-0.2,-0.3],-0.1),([-0.1,-0.2],-0.6),([-0.5,-0.6],-0.2)\}$
$\{((u, a),(u, b)),([0.1,0.1], 0.5),([0.1,0.3], 0.4),([0.8,0.9], 0.1)\}$
$\{((u, b),(u, c)),([0.1,0.1], 0.4),([0.2,0.3], 0.2),([0.8,0.9], 0.1)\}$
$\{((u, a),(v, c)),([0.1,0.1], 0.4),([0.1,0.3], 0.4),([0.5,0.6], 0.2)\}$
$\{((v, a),(v, c)),([0.1,0.3], 0.5),([0.1,0.3], 0.4),([0.5,0.6], 0.2)\}$ $N_{1}^{P} \times N_{2}^{P}=\langle\{((v, a),(v, b)),([0.1,0.2], 0.5),([0.1,0.3], 0.4),([0.8,0.9], 0.2)\}\rangle$
$\{((v, b),(w, b)),([0.1,0.2], 0.3),([0.1,0.2], 0.6),([0.8,0.9], 0.2)\}$
$\{((w, b),(w, c)),([0.1,0.2], 0.3),([0.1,0.2], 0.6),([0.8,0.9], 0.2)\}$
$\{((w, a),(w, c)),([0.2,0.3], 0.5),([0.1,0.2], 0.6),([0.5,0.6], 0.2)\}$
$\{((u, a b),(w, a)),([0.1,0.1], 0.5),([0.1,0.2], 0.6),([0.5,0.6], 0.1)\}$
$\{((u, a),(u, b)),([-0.1,-0.1],-0.5),([-0.1,-0.3],-0.4),([-0.8,-0.9],-0.1)\}$
$\{((u, b),(u, c)),([-0.1,-0.1],-0.4),([-0.2,-0.3],-0.2),([-0.8,-0.9],-0.1)\}$
$\{((u, a),(v, c)),([-0.1,-0.1],-0.4),([-0.1,-0.3],-0.4),([-0.5,-0.6],-0.2)\}$
$\{((v, a),(v, c)),([-0.1,-0.3],-0.5),([-0.1,-0.3],-0.4),([-0.5,-0.6],-0.2)\}$
$N_{1}^{N} \times N_{2}^{N}=\langle\{((v, a),(v, b)),([-0.1,-0.2],-0.5),([-0.1,-0.3],-0.4),([-0.8,-0.9],-0.2)\}\rangle$
$\{((v, b),(w, b)),([-0.1,-0.2],-0.3),([-0.1,-0.2],-0.6),([-0.8,-0.9],-0.2)\}$
$\{((w, b),(w, c)),([-0.1,-0.2],-0.3),([-0.1,-0.2],-0.6),([-0.8,-0.9],-0.2)\}$
$\{((w, a),(w, c)),([-0.2,-0.3],-0.5),([-0.1,-0.2],-0.6),([-0.5,-0.6],-0.2)\}$
$\{((u, a b),(w, a)),([-0.1,-0.1],-0.5),([-0.1,-0.2],-0.6),([-0.5,-0.6],-0.1)\}$
Definition 3.3 Let $G_{1}=\left(\left(M_{1}{ }^{P}, N_{1}{ }^{P}\right),\left(M_{1}{ }^{N}, N_{1}{ }^{N}\right)\right)$ be a bipolar neutrosophic cubic fuzzy graph of $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(\left(M_{2}{ }^{P}, N_{2}{ }^{P}\right),\left(M_{2}{ }^{N}, N_{2}{ }^{N}\right)\right)$ be a Bipolar neutrosophic cubic fuzzy graph of $G_{2}^{*}=\left(V_{2}, E_{2}\right)$. Then composition of G_{1} and G_{2} is denoted by $G_{1}\left[G_{2}\right]$ and defined as follows

$$
\begin{aligned}
G_{1}\left[G_{2}\right] & =\left(\left(M_{1}{ }^{P}, N_{1}{ }^{P}\right),\left(M_{1}{ }^{N}, N_{1}{ }^{N}\right)\right)\left[\left(M_{2}{ }^{P}, N_{2}{ }^{P}\right),\left(M_{2}{ }^{N}, N_{2}{ }^{N}\right)\right] \\
& =\left\{\left(M_{1}^{P}, M_{1}^{N}\right)\left[M_{2}^{P}, M_{2}^{N}\right],\left(N_{1}^{P}, N_{1}^{N}\right)\left[N_{2}^{P}, N_{2}^{N}\right]\right\} \\
& =\left\{\begin{array}{l}
\left(\left(A_{1}^{P}, A_{1}^{N}\right),\left(B_{1}^{P}, B_{1}^{N}\right)\right)\left[\left(\left(A_{2}^{P}, A_{2}^{N}\right),\left(B_{2}^{P}, B_{2}^{N}\right)\right)\right] \\
\left(\left(C_{1}^{P}, D_{1}^{N}\right),\left(C_{1}^{P}, D_{1}^{N}\right)\right)\left[\left(\left(C_{2}^{P}, D_{2}^{N}\right),\left(C_{2}^{P}, D_{2}^{N}\right)\right)\right]
\end{array}\right\}
\end{aligned}
$$

$$
\begin{gathered}
=\left\{\begin{array}{c}
\left(A_{1}^{P}, A_{1}^{N}\right),\left[A_{2}^{P}, A_{2}^{N}\right],\left(B_{1}^{P}, B_{1}^{N}\right),\left[B_{2}^{P}, B_{2}^{N}\right] \\
\left(C_{1}^{P}, C_{1}^{N}\right),\left[C_{2}^{P}, C_{2}^{N}\right],\left(D_{1}^{P}, D_{1}^{N}\right),\left[D_{2}^{P}, D_{2}^{N}\right]
\end{array}\right\} \\
=\left\{\begin{array}{c}
<\left(\left(\tilde{\mu}_{T A_{1}}^{P}, \tilde{\mu}_{T A_{1}}^{N}\right) \circ\left(\tilde{\mu}_{T A_{2}}^{P}, \tilde{\mu}_{T A_{2}}^{N}\right)\right),\left(\left(\tilde{\mu}_{T B_{1}}^{P}, \tilde{\mu}_{T B_{1}}^{N}\right) \circ\left(\tilde{\mu}_{T B_{2}}^{P}, \tilde{\mu}_{T B_{2}}^{N}\right)\right), \\
\left(\left(\tilde{\lambda}_{I A_{1}}^{P}, \tilde{\lambda}_{I A_{1}}^{N}\right) \circ\left(\tilde{\lambda}_{I A_{2}}^{P}, \tilde{\lambda}_{I A_{2}}^{N}\right)\right),\left(\left(\tilde{\lambda}_{I B_{1}}^{P}, \tilde{\lambda}_{I B_{1}}^{N}\right) \circ\left(\tilde{\lambda}_{I B_{2}}^{P}, \tilde{\lambda}_{I B_{2}}^{N}\right)\right), \\
\left(\left(\tilde{\gamma}_{F A_{1}}^{P}, \tilde{\gamma}_{F A_{1}}^{N}\right) \circ\left(\tilde{\gamma}_{F A_{2}}^{P}, \tilde{\gamma}_{F A_{2}}^{N}\right)\right),\left(\left(\tilde{\gamma}_{F B_{1}}^{P}, \tilde{\gamma}_{F B_{1}}^{N}\right) \circ\left(\tilde{\gamma}_{F B_{2}}^{P} \tilde{\gamma}_{F B_{2}}^{N}\right)\right)> \\
<\left(\left(\tilde{\mu}_{T C_{1},}^{P}, \tilde{\mu}_{T C_{1}}^{N}\right) \circ\left(\tilde{\mu}_{T C_{2}}^{P}, \tilde{\mu}_{T C_{2}}^{N}\right)\right),\left(\left(\tilde{\mu}_{T D_{1},}^{P}, \tilde{\mu}_{T D_{1}}^{N}\right) \circ\left(\tilde{\mu}_{T D_{2}}^{P}, \tilde{\mu}_{T D_{2}}^{N}\right)\right), \\
\left(\left(\tilde{\lambda}_{I C_{1}}^{P}, \tilde{\lambda}_{I C_{1}}^{N}\right) \circ\left(\tilde{\lambda}_{I C_{2}}^{P}, \tilde{\lambda}_{I C_{2}}^{N}\right)\right),\left(\left(\tilde{\lambda}_{I D_{1},}^{P},{\tilde{\lambda} I D_{1}}_{N}\right) \circ\left(\tilde{\lambda}_{I D_{2}}^{P}, \tilde{\lambda}_{I D_{2}}^{N}\right)\right), \\
\left(\left(\tilde{\gamma}_{F C_{1},}^{P}, \tilde{\gamma}_{F C_{1}}^{N}\right) \circ\left(\tilde{\gamma}_{F C_{2}}^{P}, \tilde{\gamma}_{F C_{2}}^{N}\right)\right),\left(\left(\tilde{\gamma}_{F D_{1},}^{P} \tilde{\gamma}_{F D_{1}}^{N}\right) \circ\left(\tilde{\gamma}_{F D_{2}}^{P}, \tilde{\gamma}_{F D_{2}}^{N}\right)\right)>
\end{array}\right\}
\end{gathered}
$$

where (i) $\forall\left(\left(u^{P}, u^{N}\right)\left(v^{P}, v^{N}\right)\right) \in\left(V_{1}, V_{2}\right)$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\left(\tilde{\mu}_{T A_{1}}^{P} \circ \tilde{\mu}_{T A_{2}}^{P}\right)\left(u^{P}, v^{P}\right)=r^{P} \min \left(\tilde{\mu}_{T A_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T A_{2}}^{P}\left(v^{P}\right)\right), \\
\left(\tilde{\mu}_{T B_{1}}^{P} \circ \tilde{\mu}_{T B_{2}}^{P}\right)\left(u^{P}, v^{P}\right)=\max \left(\tilde{\mu}_{T B_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T B_{2}}^{P}\left(v^{P}\right)\right) \\
\left(\tilde{\mu}_{T A_{1}}^{N} \circ \tilde{\mu}_{T A_{2}}^{N}\right)\left(u^{N}, v^{N}\right)=r^{N} \max \left(\tilde{\mu}_{T A_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T A_{2}}^{N}\left(v^{N}\right)\right), \\
\left(\tilde{\mu}_{T B_{1}}^{N} \circ \tilde{\mu}_{T B_{2}}^{N}\right)\left(u^{N}, v^{N}\right)=\min \left(\tilde{\mu}_{T B_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T B_{2}}^{N}\left(v^{N}\right)\right)
\end{array}\right\} \\
& \left\{\begin{array}{c}
\left(\tilde{\lambda}_{I A_{1}}^{P} \circ \tilde{\lambda}_{I A_{2}}^{P}\right)\left(u^{P}, v^{P}\right)=r^{P} \min \left(\tilde{\lambda}_{I A_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I A_{2}}^{P}\left(v^{P}\right)\right), \\
\left(\tilde{\lambda}_{I B_{1}}^{P} \circ \tilde{\lambda}_{I B_{2}}^{P}\right)\left(u^{P}, v^{P}\right)=\max \left(\tilde{\lambda}_{I A_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I B_{2}}^{P}\left(v^{P}\right)\right) \\
\left(\tilde{\lambda}_{I B_{1}}^{N} \circ \tilde{\lambda}_{I B_{2}}^{N}\right)\left(u^{N}, v^{N}\right)=r^{N} \max \left(\tilde{\lambda}_{I A_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I A_{2}}^{N}\left(v^{N}\right)\right),
\end{array}\right\}
\end{aligned}
$$

$\left\{\begin{array}{c}\left(\tilde{\gamma}_{F A_{1}}^{P} \circ \tilde{\gamma}_{F A_{2}}^{P}\right)\left(u^{P}, v^{P}\right)=r^{P} \max \left(\tilde{\gamma}_{F A_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F A_{2}}^{P}\left(v^{P}\right)\right), \\ \left(\tilde{\gamma}_{F B_{1}}^{P} \circ \tilde{\gamma}_{F B_{2}}^{P}\right)\left(u^{P}, v^{P}\right)=\min \left(\tilde{\gamma}_{F B_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F B_{2}}^{P}\left(v^{P}\right)\right) \\ \left(\tilde{\gamma}_{F A_{1}}^{N} \circ \tilde{\gamma}_{F A_{2}}^{N}\right)\left(u^{N}, v^{N}\right)=r^{N} \min \left(\tilde{\gamma}_{F A_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F A_{2}}^{N}\left(v^{N}\right)\right), \\ \left(\tilde{\gamma}_{F B_{1}}^{N} \circ \tilde{\gamma}_{F B_{2}}^{N}\right)\left(u^{N}, v^{N}\right)=\max \left(\tilde{\gamma}_{F B_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F B_{2}}^{N}\left(v^{N}\right)\right)\end{array}\right\}$
(ii) $\forall\left(u^{P}, u^{N}\right) \in V_{1}$ and $\left(v_{1}^{P} v_{2}^{P}\right)\left(v_{1}^{N} v_{2}^{N}\right) \in E$

$$
\left\{\begin{array}{c}
\left(\tilde{\mu}_{T C_{1}}^{P} \circ \tilde{\mu}_{T C_{2}}^{P}\right)\left(\left(u^{P}, v_{1}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)=r^{P} \min \left(\tilde{\mu}_{T C_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T C_{2}}^{P}\left(v_{1}^{P} v_{2}^{P}\right)\right), \\
\left(\tilde{\mu}_{T D_{1}}^{P} \circ \tilde{\mu}_{T D_{2}}^{P}\right)\left(\left(u^{P}, v_{1}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)=\max \left(\tilde{\mu}_{T D_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T D_{2}}^{P}\left(v_{1}^{P} v_{2}^{P}\right)\right) \\
\left(\tilde{\mu}_{C_{1}}^{N} \circ \tilde{\mu}_{T C_{2}}^{N}\right)\left(\left(u^{N}, v_{1}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)=r^{N} \max \left(\tilde{\mu}_{T C_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T C_{2}}^{N}\left(v_{1}^{N} v_{2}^{N}\right)\right), \\
\left(\tilde{\mu}_{T D_{1}}^{N} \circ \tilde{\mu}_{T D_{2}}^{N}\right)\left(\left(u^{N}, v_{1}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)=\min \left(\tilde{\mu}_{T D_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T D_{2}}^{N}\left(v_{1}^{N} v_{2}^{N}\right)\right)
\end{array}\right\}
$$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\left(\tilde{\lambda}_{I C_{1}}^{P} \circ \tilde{\lambda}_{I C_{2}}^{P}\right)\left(\left(u^{P}, v_{1}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)=r^{P} \min \left(\tilde{\lambda}_{I C_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I C_{2}}^{P}\left(v_{1}^{P} v_{2}^{P}\right)\right), \\
\left(\tilde{\lambda}_{I D_{1}}^{P} \circ \tilde{\lambda}_{I D_{2}}^{P}\right)\left(\left(u^{P}, v_{1}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)=\max \left(\tilde{\lambda}_{I D_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I D_{2}}^{P}\left(v_{1}^{P} v_{2}^{P}\right)\right) \\
\left(\tilde{\lambda}_{I C_{1}}^{N} \circ \tilde{\lambda}_{I C_{2}}^{N}\right)\left(\left(u^{N}, v_{1}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)=r^{N} \max \left(\tilde{\lambda}_{I C_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I C_{2}}^{N}\left(v_{1}^{N} v_{2}^{N}\right)\right), \\
\left(\tilde{\lambda}_{I D_{1}}^{N} \circ \tilde{\lambda}_{I D_{2}}^{N}\right)\left(\left(u^{N}, v_{1}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)=\min \left(\tilde{\lambda}_{I D_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I D_{2}}^{N}\left(v_{1}^{N} v_{2}^{N}\right)\right)
\end{array}\right\} \\
& \left\{\begin{array}{c}
\left(\tilde{\gamma}_{F C_{1}}^{P} \circ \tilde{\gamma}_{F C_{2}}^{P}\right)\left(\left(u^{P}, v_{1}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)=r^{P} \max \left(\tilde{\gamma}_{F C_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F C_{2}}^{P}\left(v_{1}^{P} v_{2}^{P}\right)\right), \\
\left(\tilde{\gamma}_{F D_{1}}^{P} \circ \tilde{\gamma}_{F D_{2}}^{P}\right)\left(\left(u^{P}, v_{1}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)=\min \left(\tilde{\gamma}_{F D_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F D_{2}}^{P}\left(v_{1}^{P} v_{2}^{P}\right)\right) \\
\left(\tilde{\gamma}_{F C_{1}}^{N} \circ \tilde{\gamma}_{F C_{2}}^{N}\right)\left(\left(u^{N}, v_{1}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)=r^{N} \min \left(\tilde{\gamma}_{F C_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F C_{2}}^{N}\left(v_{1}^{N} v_{2}^{N}\right)\right), \\
\left(\tilde{\gamma}_{F D_{1}}^{N} \circ \tilde{\gamma}_{F D_{2}}^{N}\right)\left(\left(u^{N}, v_{1}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)=\max \left(\tilde{\gamma}_{F D_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F D_{2}}^{N}\left(v_{1}^{N} v_{2}^{N}\right)\right)
\end{array}\right\}
\end{aligned}
$$

(iii) $\forall\left(v^{P}, v^{N}\right) \in V_{1}$ and $\left(u_{1}^{P} u_{2}^{P}\right)\left(u_{1}^{N} u_{2}^{N}\right) \in E_{1}$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\left(\tilde{\mu}_{T C_{1}}^{P} \circ \tilde{\mu}_{T C_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=r^{P} \min \left(\tilde{\mu}_{T C_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\mu}_{T A_{2}}^{P}\left(v^{P}\right)\right), \\
\left(\tilde{\mu}_{T D_{1}}^{P} \circ \tilde{\mu}_{T D_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=\max \left(\tilde{\mu}_{T D_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\mu}_{T B_{2}}^{P}\left(v^{P}\right)\right) \\
\left(\tilde{\mu}_{T C_{1}}^{N} \circ \tilde{\mu}_{T C_{2}}^{N}\right)\left(\left(u_{1}^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=r^{N} \max \left(\tilde{\mu}_{T C_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\mu}_{T A_{2}}^{N}\left(v^{N}\right)\right), \\
\left(\tilde{\mu}_{T D_{1}}^{N} \circ \tilde{\mu}_{T D_{2}}^{N}\right)\left(\left(u_{1}{ }^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=\min \left(\tilde{\mu}_{T D_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\mu}_{T B_{2}}^{N}\left(v^{N}\right)\right)
\end{array}\right\} \\
& \left\{\begin{array}{c}
\left(\tilde{\lambda}_{I C_{1}}^{P} \circ \tilde{\lambda}_{I C_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=r^{P} \min \left(\tilde{\lambda}_{I C_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\lambda}_{I A_{2}}^{P}\left(v^{P}\right)\right), \\
\left(\tilde{\lambda}_{I D_{1}}^{P} \circ \tilde{\lambda}_{I D_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=\max \left(\tilde{\lambda}_{I D_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\lambda}_{I B_{2}}^{P}\left(v^{P}\right)\right) \\
\left(\tilde{\lambda}_{I C_{1}}^{N} \circ \tilde{\lambda}_{I C_{2}}^{N}\right)\left(\left(u_{1}{ }^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=r^{N} \max \left(\tilde{\lambda}_{I C_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\lambda}_{I A_{2}}^{N}\left(v^{N}\right)\right), \\
\left(\tilde{\lambda}_{I D_{1}}^{N} \circ \tilde{\lambda}_{I D_{2}}^{N}\right)\left(\left(u_{1}{ }^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=\min \left(\tilde{\lambda}_{I D_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\lambda}_{I B_{2}}^{N}\left(v^{N}\right)\right)
\end{array}\right\} \\
& \left\{\begin{array}{c}
\left(\tilde{\gamma}_{F C_{1}}^{P} \circ \tilde{\gamma}_{F C_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=r^{P} \max \left(\tilde{\gamma}_{F C_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\gamma}_{F A_{2}}^{P}\left(v^{P}\right)\right), \\
\left(\tilde{\gamma}_{F D_{1}}^{P} \circ \tilde{\gamma}_{F D_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=\min \left(\tilde{\gamma}_{F D_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\gamma}_{F B_{2}}^{P}\left(v^{P}\right)\right) \\
\left(\tilde{\gamma}_{F C_{1}}^{N} \circ \tilde{\gamma}_{F C_{2}}^{N}\right)\left(\left(u_{1}{ }^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=r^{N} \min \left(\tilde{\gamma}_{F C_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\gamma}_{F A_{2}}^{N}\left(v^{N}\right)\right), \\
\left(\tilde{\gamma}_{F D_{1}}^{N} \circ \tilde{\gamma}_{F D_{2}}^{N}\right)\left(\left(u_{1}{ }^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=\max \left(\tilde{\gamma}_{F D_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\gamma}_{F B_{2}}^{N}\left(v^{N}\right)\right)
\end{array}\right\} \\
& \left\{\begin{array}{c}
\left(\tilde{\lambda}_{I C_{1}}^{P} \circ \tilde{\lambda}_{I C_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=r^{P} \min \left(\tilde{\lambda}_{I C_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\lambda}_{I A_{2}}^{P}\left(v^{P}\right)\right), \\
\left(\tilde{\lambda}_{I D_{1}}^{P} \circ \tilde{\lambda}_{I D_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=\max \left(\tilde{\lambda}_{I D_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\lambda}_{I B_{2}}^{P}\left(v^{P}\right)\right) \\
\left(\tilde{\lambda}_{I C_{1}}^{N} \circ \tilde{\lambda}_{I C_{2}}^{N}\right)\left(\left(u_{1}{ }^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=r^{N} \max \left(\tilde{\lambda}_{I C_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\lambda}_{I A_{2}}^{N}\left(v^{N}\right)\right), \\
\left(\tilde{\lambda}_{I D_{1}}^{N} \circ \tilde{\lambda}_{I D_{2}}^{N}\right)\left(\left(u_{1}{ }^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=\min \left(\tilde{\lambda}_{I D_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\lambda}_{I B_{2}}^{N}\left(v^{N}\right)\right)
\end{array}\right\}
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\left(\tilde{\gamma}_{F C_{1}}^{P} \circ \tilde{\gamma}_{F C_{2}}^{P}\right)\left(\left(u_{1}^{P}, v^{P}\right)\left(u_{2}^{P}, v^{P}\right)\right)=r^{P} \max \left(\tilde{\gamma}_{F C_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\gamma}_{F A_{2}}^{P}\left(v^{P}\right)\right), \\
\left(\tilde{\gamma}_{F D_{1}}^{P} \circ \tilde{\gamma}_{F D_{2}}^{P}\right)\left(\left(u_{1}{ }^{P}, v^{P}\right)\left(u_{2}{ }^{P}, v^{P}\right)\right)=\min \left(\tilde{\gamma}_{F D_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right), \tilde{\gamma}_{F B_{2}}^{P}\left(v^{P}\right)\right) \\
\left(\tilde{\gamma}_{F C_{1}}^{N} \circ \tilde{\gamma}_{F C_{2}}^{N}\right)\left(\left(u_{1}^{N}, v^{N}\right)\left(u_{2}^{N}, v^{N}\right)\right)=r^{N} \min \left(\tilde{\gamma}_{F C_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{\gamma}_{F A_{2}}^{N}\left(v^{N}\right)\right), \\
\left(\tilde{\gamma}_{F D_{1}}^{N} \circ \tilde{\gamma}_{F D_{2}}^{N}\right)\left(\left(u_{1}{ }^{N}, v^{N}\right)\left(u_{2}{ }^{N}, v^{N}\right)\right)=\max \left(\tilde{\gamma}_{F D_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right), \tilde{r}_{F B_{2}}^{N}\left(v^{N}\right)\right)
\end{array}\right\}
$$

(iv) $\forall\left(\left(u_{1}^{P}, v_{1}^{P}\right)\left(u_{2}^{P}, v_{2}^{P}\right)\right),\left(\left(u_{1}^{N}, v_{1}^{N}\right)\left(u_{2}^{N}, v_{2}^{N}\right)\right) \in E^{\circ}-E$

$$
\begin{aligned}
& \left\{\begin{array}{c}
\left(\tilde{\mu}_{T C_{1}}^{P} \circ \tilde{\mu}_{T C_{2}}^{P}\right)\left(\left(u_{1}^{P}, v_{1}^{P}\right)\left(u_{2}^{P}, v_{2}^{P}\right)\right)=r^{P} \min \left(\tilde{\mu}_{T A_{2}}^{P}\left(v_{1}{ }^{P}\right), \tilde{\mu}_{T A_{2}}^{P}\left(v_{2}{ }^{P}\right), \tilde{\mu}_{T C_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right)\right), \\
\left(\tilde{\mu}_{T D_{1}}^{P} \circ \tilde{\mu}_{T D_{2}}^{P}\right)\left(\left(u_{1}^{P}, v_{1}^{P}\right)\left(u_{2}^{P}, v_{2}^{P}\right)\right)=\max \left(\tilde{\mu}_{T B_{2}}^{P}\left(v_{1}{ }^{P}\right), \tilde{\mu}_{T B_{2}}^{P}\left(v_{2}{ }^{P}\right), \tilde{\mu}_{T D_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right)\right) \\
\left(\tilde{\mu}_{T C_{1}}^{N} \circ \tilde{\mu}_{T C_{2}}^{N}\right)\left(\left(u_{1}^{N}, v_{1}^{N}\right)\left(u_{2}^{N}, v_{2}^{N}\right)\right)=r^{N} \max \left(\tilde{\mu}_{T A_{2}}^{N}\left(v_{1}^{N}\right), \tilde{\mu}_{T A_{2}}^{N}\left(v_{2}{ }^{N}\right), \tilde{\mu}_{T C_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right)\right), \\
\left(\tilde{\mu}_{T D_{1}}^{N} \circ \tilde{\mu}_{T D_{2}}^{N}\right)\left(\left(u_{1}^{N}, v_{1}^{N}\right)\left(u_{2}^{N}, v_{2}^{N}\right)\right)=\min \left(\tilde{\mu}_{T B_{2}}^{N}\left(v_{1}^{N}\right), \tilde{\mu}_{T B_{2}}^{N}\left(v_{2}^{N}\right), \tilde{\mu}_{T D_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right)\right)
\end{array}\right\} \\
& \left\{\begin{array}{c}
\left(\tilde{\lambda}_{I C_{1}}^{P} \circ \tilde{\lambda}_{I C_{2}}^{P}\right)\left(\left(u_{1}^{P}, v_{1}^{P}\right)\left(u_{2}^{P}, v_{2}^{P}\right)\right)=r^{P} \min \left(\tilde{\lambda}_{I A_{2}}^{P}\left(v_{1}{ }^{P}\right), \tilde{\lambda}_{I A_{2}}^{P}\left(v_{2}{ }^{P}\right), \tilde{\lambda}_{I C_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right)\right), \\
\left(\tilde{\lambda}_{I D_{1}}^{P} \circ \tilde{\lambda}_{I D_{2}}^{P}\right)\left(\left(u_{1}^{P}, v_{1}^{P}\right)\left(u_{2}^{P}, v_{2}^{P}\right)\right)=\max \left(\tilde{\lambda}_{I B_{2}}^{P}\left(v_{1}{ }^{P}\right), \tilde{\lambda}_{I B_{2}}^{P}\left(v_{2}^{P}\right), \tilde{\lambda}_{I D_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right)\right) \\
\left(\tilde{\lambda}_{I C_{1}}^{N} \circ \tilde{\lambda}_{I C_{2}}^{N}\right)\left(\left(u_{1}^{N}, v_{1}^{N}\right)\left(u_{2}^{N}, v_{2}^{N}\right)\right)=r^{N} \max \left(\tilde{\lambda}_{I A_{2}}^{N}\left(v_{1}{ }^{N}\right), \tilde{\lambda}_{I A_{2}}^{N}\left(v_{2}^{N}\right), \tilde{\lambda}_{I C_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right)\right), \\
\left(\tilde{\lambda}_{I D_{1}}^{N} \circ \tilde{\lambda}_{I D_{2}}^{N}\right)\left(\left(u_{1}^{N}, v_{1}^{N}\right)\left(u_{2}^{N}, v_{2}^{N}\right)\right)=\min \left(\tilde{\lambda}_{I B_{2}}^{N}\left(v_{1}^{N}\right), \tilde{\lambda}_{I B_{2}}^{N}\left(v_{2}^{N}\right), \tilde{\lambda}_{I B_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right)\right)
\end{array}\right\} \\
& \left\{\begin{array}{c}
\left(\tilde{\gamma}_{F C_{1}}^{P} \circ \tilde{\gamma}_{F C_{2}}^{P}\right)\left(\left(u_{1}^{P}, v_{1}^{P}\right)\left(u_{2}^{P}, v_{2}^{P}\right)\right)=r^{P} \max \left(\tilde{\gamma}_{F A_{2}}^{P}\left(v_{1}{ }^{P}\right), \tilde{\gamma}_{F A_{2}}^{P}\left(v_{2}{ }^{P}\right), \tilde{\gamma}_{F C_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right)\right), \\
\left(\tilde{\gamma}_{F D_{1}}^{P} \circ \tilde{\gamma}_{F D_{2}}^{P}\right)\left(\left(u_{1}^{P}, v_{1}^{P}\right)\left(u_{2}^{P}, v_{2}^{P}\right)\right)=\min \left(\tilde{\gamma}_{F B_{2}}^{P}\left(v_{1}{ }^{P}\right), \tilde{\gamma}_{F B_{2}}^{P}\left(v_{2}^{P}\right), \tilde{\gamma}_{F D_{1}}^{P}\left(u_{1}^{P} u_{2}^{P}\right)\right) \\
\left(\tilde{\gamma}_{F C_{1}}^{N} \circ \tilde{\gamma}_{F C_{2}}^{N}\right)\left(\left(u_{1}^{N}, v_{1}^{N}\right)\left(u_{2}^{N}, v_{2}^{N}\right)\right)=r^{N} \min \left(\tilde{\gamma}_{F A_{2}}^{N}\left(v_{1}^{N}\right), \tilde{\gamma}_{F A_{2}}^{N}\left(v_{2}^{N}\right), \tilde{\gamma}_{F C_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right)\right), \\
\left(\tilde{\gamma}_{F D_{1}}^{N} \circ \tilde{\gamma}_{F D_{2}}^{N}\right)\left(\left(u_{1}^{N}, v_{1}^{N}\right)\left(u_{2}^{N}, v_{2}^{N}\right)\right)=\max \left(\tilde{\gamma}_{F B_{2}}^{N}\left(v_{1}^{N}\right), \tilde{\gamma}_{F B_{2}}^{N}\left(v_{2}^{N}\right), \tilde{\gamma}_{F D_{1}}^{N}\left(u_{1}^{N} u_{2}^{N}\right)\right)
\end{array}\right\}
\end{aligned}
$$

Example 3.4 Let $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ and $G_{2}^{*}=\left(V_{2}, E_{2}\right)$ be two fuzzy graphs, where $V_{1}=(u, v)$ and $V_{2}=$ (x, y). Suppose M_{1} and M_{2} be the bipolar neutrosophic fuzzy cubic set representations of V_{1} and V_{2}. Also N_{1} and N_{2} be the bipolar neutrosophic fuzzy cubic set representations of E_{1} and E_{2} and defined as

$$
\begin{aligned}
M_{1}{ }^{P}= & \left\langle\begin{array}{l}
\{u,([0.4,0.5], 0.1),([0.1,0.1], 0.4),([0.7,0.8], 0.2)\} \\
\{v,([0.3,0.4], 0.2),([0.1,0.2], 0.1),([0.4,0.5], 0.5)\}
\end{array}\right\rangle \\
M_{1}{ }^{N}= & \left\langle\begin{array}{l}
\{u,([-0.4,-0.5],-0.1),([-0.1,-0.1],-0.4),([-0.7,-0.8],-0.2)\} \\
\{v,([-0.3,-0.4],-0.2),([-0.1,-0.2],-0.1),([-0.4,-0.5],-0.5)\}
\end{array}\right\rangle \\
N_{1}{ }^{P}= & \langle\{u v,([0.3,0.4], 0.2),([0.1,0.1], 0.4),([0.7,0.8], 0.2)\}\rangle \\
N_{1}{ }^{N}= & \langle\{u v,([-0.3,-0.4],-0.2),([-0.1,-0.1],-0.4),([-0.7,-0.8],-0.2)\}\rangle
\end{aligned}
$$

and

$$
\left.\begin{array}{rl}
M_{2}{ }^{P}= & \left\langle\begin{array}{l}
\{x,([0.5,0.6], 0.3),([0.7,0.8], 0.7),([0.1,0.1], 0.5)\} \\
\{y,([0.2,0.3], 0.6),([0.5,0.6], 0.4),([0.8,0.9], 0.8)\}
\end{array}\right\rangle
\end{array}\right\}
$$

$$
N_{2}{ }^{P}=\langle\{x y,([0.2,0.3], 0.6),([0.5,0.6], 0.7),([0.8,0.9], 0.5)\}\rangle
$$

$$
N_{2}^{N}=\langle\{x y,([-0.2,-0.3],-0.6),([-0.5,-0.6],-0.7),([-0.8,-0.9],-0.5)\}\rangle
$$

Clearly $G_{1}=\left(\left(M_{1}{ }^{P}, N_{1}{ }^{P}\right),\left(M_{1}{ }^{N}, N_{1}{ }^{N}\right)\right)$ and $G_{2}=\left(\left(M_{2}{ }^{P}, N_{2}{ }^{P}\right),\left(M_{2}{ }^{N}, N_{2}{ }^{N}\right)\right)$ are bipolar neutrosophic cubic fuzzy graphs. So, the composition of two bipolar neutrosophic cubic fuzzy graphs G_{1} and G_{2} is again a bipolar neutrosophic cubic fuzzy graph, where

$$
\begin{aligned}
& \{(u, x),([0.4,0.5], 0.3),([0.1,0.1], 0.7),([0.7,0.8], 0.2)\} \\
& \{(u, y),([0.2,0.3], 0.6),([0.1,0.1], 0.4),([0.8,0.9], 0.2)\} \\
& M_{1}^{P}\left[M_{2}^{P}\right]=\left\{\begin{array}{l}
\{(u, y),([0.2,0.3], 0.6),([0.1,0.1], 0.4),([0.8,0.9], 0.2)\} \\
\{(v, x),([0.3,0.4], 0.3),([0.1,0.2], 0.7),([0.4,0.5], 0.5)\}
\end{array}\right\rangle \\
& \{(v, y),([0.2,0.3], 0.6),([0.1,0.2], 0.4),([0.8,0.9], 0.5)\} \\
& \{(u, x),([-0.4,-0.5],-0.3),([-0.1,-0.1],-0.7),([-0.7,-0.8],-0.2)\} \\
& \{(u, y),([-0.2,-0.3],-0.6),([-0.1,-0.1],-0.4),([-0.8,-0.9],-0.2)\} \\
& M_{1}^{N}\left[M_{2}^{N}\right]=\left\langle\begin{array}{cc}
\{(v, x),([-0.3,-0.4],-0.3),([-0.1,-0.2],-0.7),([-0.4,-0.5],-0.5)\}
\end{array}\right\rangle \\
& \{(v, y),([-0.2,-0.3],-0.6),([-0.1,-0.2],-0.4),([-0.8,-0.9],-0.5)\} \\
& \{((u, x),(u, y)),([0.2,0.3], 0.6),([0.1,0.1], 0.7),([0.8,0.9], 0.2)\} \\
& \{((u, y),(v, y)),([0.2,0.3], 0.6),([0.1,0.1], 0.4),([0.8,0.9], 0.2)\} \\
& N_{1}^{P}\left[N_{2}^{P}\right]=\left\{\begin{array}{l}
\{((v, y),(v, x)),([0.2,0.3], 0.6),([0.1,0.2], 0.7),([0.8,0.9], 0.5)\} \\
\{((v, x),(u, x)),([0.3,0.4], 0.3),([0.1,0.1], 0.7),([0.7,0.8], 0.2)\}
\end{array}\right\rangle \\
& \{((u, x),(v, y)),([0.2,0.3], 0.6),([0.1,0.1], 0.7),([0.8,0.9], 0.2)\} \\
& \{((u, y),(v, x)),([0.2,0.3], 0.6),([0.1,0.1], 0.7),([0.8,0.9], 0.2)\}
\end{aligned}
$$

$$
\begin{aligned}
&\{((u, x),(u, y)),([-0.2,-0.3],-0.6),([-0.1,-0.1],-0.7),([-0.8,-0.9],-0.2)\} \\
&\{((u, y),(v, y)),([-0.2,-0.3],-0.6),([-0.1,-0.1],-0.4),([-0.8,-0.9],-0.2)\} \\
& N_{1}^{N}\left[N_{2}^{N}\right]=\{((v, y),(v, x)),([-0.2,-0.3],-0.6),([-0.1,-0.2],-0.7),([-0.8,-0.9],-0.5)\} \\
&\{((v, x),(u, x)),([-0.3,-0.4],-0.3),([-0.1,-0.1],-0.7),([-0.7,-0.8],-0.2)\} \\
&\{((u, x),(v, y)),([-0.2,-0.3],-0.6),([-0.1,-0.1],-0.7),([-0.8,-0.9],-0.2)\} \\
&\{((u, y),(v, x)),([-0.2,-0.3],-0.6),([-0.1,-0.1],-0.7),([-0.8,-0.9],-0.2)\}
\end{aligned}
$$

Proposition 3.5
Let $G_{1}=\left(\left(M_{1}{ }^{P}, N_{1}{ }^{P}\right),\left(M_{1}{ }^{N}, N_{1}{ }^{N}\right)\right)$ and $G_{2}=\left(\left(M_{2}{ }^{P}, N_{2}{ }^{P}\right),\left(M_{2}{ }^{N}, N_{2}{ }^{N}\right)\right)$ be two bipolar neutrosophic cubic fuzzy graphs, then the Cartesian product of two bipolar neutrosophic cubic fuzzy graphs is again a bipolar neutrosophic cubic fuzzy graph.

Proof: Condition is oblivious for $\left(M_{1}{ }^{P}, M_{1}{ }^{N}\right) \times\left(M_{2}{ }^{P}, M_{2}{ }^{N}\right)$. Therefore we verify conditions only for $\left(N_{1}{ }^{P}, N_{1}{ }^{N}\right) \times\left(N_{2}{ }^{P}, N_{2}{ }^{N}\right)$, where

$$
\begin{aligned}
&\left(N_{1}{ }^{P}, N_{1}{ }^{N}\right) \times\left(N_{2}{ }^{P}, N_{2}{ }^{N}\right) \\
&=\left\{\begin{array}{c}
\left(\left(\tilde{\mu}_{T C_{1} \times T C_{2}}^{P}, \tilde{\mu}_{T D_{1} \times T D_{2}}^{P}\right),\left(\tilde{\mu}_{T C_{1} \times T C_{2}}^{N}, \tilde{\mu}_{T D_{1} \times T D_{2}}^{N}\right)\right),\left(\left(\tilde{\lambda}_{I C_{1} \times I C_{2}, I D_{1} \times I D_{2}}^{P}\right),\left(\tilde{\lambda}_{I C_{1} \times I C_{2}, I D_{1} \times I D_{2}}\right)\right), \\
\left(\left(\tilde{\gamma}_{F C_{1} \times F C_{2}, F D_{1} \times F D_{2}}^{P}\right),\left(\tilde{\gamma}_{F C_{1} \times F C_{2}, F D_{1} \times F D_{2}}^{N}\right)\right)
\end{array}\right\}
\end{aligned}
$$

Let $\left(u^{P}, u^{N}\right) \in V_{1}$ and $u_{2} v_{2} \in E_{2}$.
Then

$$
\begin{aligned}
& \left(\tilde{\mu}_{T C_{1} \times T C_{2}}^{P}\left(\left(u^{P}, u_{2}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right), \tilde{\mu}_{T C_{1} \times T C_{2}}^{N}\left(\left(u^{N}, u_{2}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right) \\
& =\left\{r^{P} \min \left\{\left(\tilde{\mu}_{T A_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T C_{2}}^{P}\left(u_{2}{ }^{P}, v_{2}^{P}\right)\right)\right\}, r^{N} \max \left\{\left(\tilde{\mu}_{T A_{1}}^{N}\left(u^{P}\right), \tilde{\mu}_{T C_{2}}^{N}\left(u_{2}{ }^{P}, v_{2}^{P}\right)\right)\right\}\right\} \\
& \leq\left\{\begin{array}{ll}
r^{P} \min \left\{\left(\tilde{\mu}_{T A_{1}}^{P}\left(u^{P}\right),\right.\right. & \left.\left.r^{P} \min \left(\tilde{\mu}_{T A_{2}}^{P}\left(u_{2}{ }^{P}\right), \tilde{\mu}_{T A_{2}}^{P}\left(v_{2}{ }^{P}\right)\right)\right)\right\}, \\
r^{N} \max \left\{\left(\tilde{\mu}_{T A_{1}}^{N}\left(u^{N}\right),\right.\right. & \left.\left.r^{N} \max \left(\tilde{\mu}_{T A_{2}}^{N}\left(u_{2}{ }^{N}\right), \tilde{\mu}_{T A_{2}}^{N}\left(v_{2}{ }^{N}\right)\right)\right)\right\}
\end{array}\right\} \\
& =\left\{\begin{array}{l}
r^{P} \min \left\{r^{P} \min \left(\left(\tilde{\mu}_{T A_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T A_{2}}^{P}\left(u_{2}^{P}\right)\right), r^{P} \min \left(\tilde{\mu}_{T A_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T A_{2}}^{P}\left(v_{2}^{P}\right)\right)\right)\right\}, \\
r^{N} \max \left\{r^{N} \max \left(\left(\tilde{\mu}_{T A_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T A_{2}}^{N}\left(u_{2}{ }^{N}\right)\right), r^{N} \max \left(\tilde{\mu}_{T A_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T A_{2}}^{N}\left(v_{2}{ }^{N}\right)\right)\right)\right\}
\end{array}\right\} \\
& =\left\{\begin{array}{l}
r^{P} \min \left\{\left(\tilde{\mu}_{T A_{1}}^{P} \times \tilde{\mu}_{T A_{2}}^{P}\right)\left(u^{P}, u_{2}^{P}\right),\left(\tilde{\mu}_{T A_{1}}^{P} \times \tilde{\mu}_{T A_{2}}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right\}, \\
r^{N} \max \left\{\left(\tilde{\mu}_{T A_{1}}^{N} \times \tilde{\mu}_{T A_{2}}^{N}\right)\left(u^{N}, u_{2}^{N}\right),\left(\tilde{\mu}_{T A_{1}}^{N} \times \tilde{\mu}_{T A_{2}}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right\}
\end{array}\right\} \\
& \left(\tilde{\mu}_{T D_{1} \times T D_{2}}^{P}\left(\left(u^{P}, u_{2}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right), \tilde{\mu}_{T D_{1} \times T D_{2}}^{N}\left(\left(u^{N}, u_{2}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right) \\
& =\left\{\max \left\{\left(\tilde{\mu}_{T B_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T D_{2}}^{P}\left(u_{2}{ }^{P}, v_{2}^{P}\right)\right)\right\}, \min \left\{\left(\tilde{\mu}_{T B_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T D_{2}}^{N}\left(u_{2}^{N}, v_{2}^{N}\right)\right)\right\}\right.
\end{aligned}
$$

$$
\leq\left\{\begin{array}{l}
\max \left\{\left(\tilde{\mu}_{T B_{1}}^{P}\left(u^{P}\right), \max \left(\tilde{\mu}_{T B_{2}}^{P}\left(u_{2}^{P}\right)\right), \tilde{\mu}_{T B_{2}}^{P}\left(v_{2}{ }^{P}\right)\right\},\right. \\
\min \left\{\left(\tilde{\mu}_{T B_{1}}^{N}\left(u^{N}\right), \min \left(\tilde{\mu}_{T B_{2}}^{N}\left(u_{2}^{N}\right)\right), \tilde{\mu}_{T B_{2}}^{N}\left(v_{2}{ }^{N}\right)\right\}\right.
\end{array}\right\}
$$

$$
=\left\{\begin{array}{l}
\max \left\{\max \left(\tilde{\mu}_{T B_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T B_{2}}^{P}\left(u_{2}^{P}\right)\right), \max \left(\tilde{\mu}_{T B_{1}}^{P}\left(u^{P}\right), \tilde{\mu}_{T B_{2}}^{P}\left(v_{2}^{P}\right)\right)\right\} \\
\min \left\{\min \left(\tilde{\mu}_{T B_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T B_{2}}^{N}\left(u_{2}^{N}\right)\right), \min \left(\tilde{\mu}_{T B_{1}}^{N}\left(u^{N}\right), \tilde{\mu}_{T B_{2}}^{N}\left(v_{2}^{N}\right)\right)\right\}
\end{array}\right\}
$$

$$
=\left\{\begin{array}{l}
\max \left\{\left(\tilde{\mu}_{T B_{1}}^{P} \times \tilde{\mu}_{T B_{2}}^{P}\right)\left(u^{P}, u_{2}^{P}\right),\left(\left(\tilde{\mu}_{T B_{1}}^{P} \times \tilde{\mu}_{T B_{2}}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)\right\}, \\
\min \left\{\left(\tilde{\mu}_{T B_{1}}^{N} \times \tilde{\mu}_{T B_{2}}^{N}\right)\left(u^{N}, u_{2}^{N}\right),\left(\left(\tilde{\mu}_{T B_{1}}^{N} \times \tilde{\mu}_{T B_{2}}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right\}
\end{array}\right\}
$$

$$
\left(\tilde{\lambda}_{I C_{1} \times I C_{2}}^{P}\left(\left(u^{P}, u_{2}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right), \tilde{\lambda}_{I C_{1} \times I C_{2}}^{N}\left(\left(u^{N}, u_{2}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right)
$$

$$
=\left\{r^{P} \min \left\{\left(\tilde{\lambda}_{I A_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I C_{2}}^{P}\left(u_{2}^{P}, v_{2}^{P}\right)\right)\right\},\left\{\left(\tilde{\lambda}_{I A_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I C_{2}}^{N}\left(u_{2}^{N}, v_{2}^{N}\right)\right)\right\}\right.
$$

$$
\leq\left\{\begin{array}{ll}
r^{P} \min \left\{\left(\tilde{\lambda}_{I A_{1}}^{P}\left(u^{P}\right),\right.\right. & \left.\left.r^{P} \min \left(\tilde{\lambda}_{I A_{2}}^{P}\left(u_{2}{ }^{P}\right), \tilde{\lambda}_{I A_{2}}^{P}\left(v_{2}{ }^{P}\right)\right)\right)\right\}, \\
r^{N} \max \left\{\left(\tilde{\lambda}_{I A_{1}}^{N}\left(u^{N}\right),\right.\right. & \left.\left.r^{N} \max \left(\tilde{\lambda}_{I A_{2}}^{N}\left(u_{2}{ }^{N}\right), \tilde{\lambda}_{I A_{2}}^{N}\left(v_{2}{ }^{N}\right)\right)\right)\right\}
\end{array}\right\}
$$

$$
=\left\{\begin{array}{l}
r^{P} \min \left\{r^{P} \min \left(\left(\tilde{\lambda}_{I A_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I A_{2}}^{P}\left(u_{2}^{P}\right)\right), r^{P} \min \left(\tilde{\lambda}_{I A_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I A_{2}}^{P}\left(v_{2}{ }^{P}\right)\right)\right)\right\}, \\
r^{N} \min \left\{r^{N} \max \left(\left(\tilde{\lambda}_{I A_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I A_{2}}^{N}\left(u_{2}^{N}\right)\right), r^{N} \min \left(\tilde{\lambda}_{I A_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I A_{2}}^{N}\left(v_{2}^{N}\right)\right)\right)\right\}
\end{array}\right\}
$$

$$
=\left\{\begin{array}{l}
r^{P} \min \left\{\left(\tilde{\lambda}_{I A_{1}}^{P} \times \tilde{\lambda}_{I A_{2}}^{P}\right)\left(u^{P}, u_{2}^{P}\right),\left(\tilde{\lambda}_{I A_{1}}^{P} \times \tilde{\lambda}_{I A_{2}}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right\}, \\
r^{N} \max \left\{\left(\tilde{\lambda}_{I A_{1}}^{N} \times \tilde{\lambda}_{I A_{2}}^{N}\right)\left(u^{N}, u_{2}^{N}\right),\left(\tilde{\lambda}_{I A_{1}}^{N} \times \tilde{\lambda}_{I A_{2}}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right\}
\end{array}\right\}
$$

$$
\left(\tilde{\lambda}_{I D_{1} \times I D_{2}}^{P}\left(\left(u^{P}, u_{2}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right), \tilde{\lambda}_{I D_{1} \times I D_{2}}^{N}\left(\left(u^{N}, u_{2}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right)
$$

$$
=\left\{\max \left\{\left(\tilde{\lambda}_{I B_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I D_{2}}^{P}\left(u_{2}^{P}, v_{2}^{P}\right)\right)\right\}, \min \left\{\left(\tilde{\lambda}_{I B_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I D_{2}}^{N}\left(u_{2}^{N}, v_{2}^{N}\right)\right)\right\}\right.
$$

$$
\leq\left\{\begin{array}{l}
\max \left\{\left(\tilde{\lambda}_{I B_{1}}^{P}\left(u^{P}\right), \max \left(\tilde{\lambda}_{I B_{2}}^{P}\left(u_{2}{ }^{P}\right)\right), \tilde{\lambda}_{I B_{2}}^{P}\left(v_{2}{ }^{P}\right)\right\},\right. \\
\min \left\{\left(\tilde{\lambda}_{I B_{1}}^{N}\left(u^{N}\right), \min \left(\tilde{\lambda}_{I B_{2}}^{N}\left(u_{2}{ }^{N}\right)\right), \tilde{\lambda}_{I B_{2}}^{N}\left(v_{2}{ }^{N}\right)\right\}\right.
\end{array}\right\}
$$

$$
=\left\{\begin{array}{l}
\max \left\{\max \left(\tilde{\lambda}_{I B_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I B_{2}}^{P}\left(u_{2}^{P}\right)\right), \max \left(\tilde{\lambda}_{I B_{1}}^{P}\left(u^{P}\right), \tilde{\lambda}_{I B_{2}}^{P}\left(v_{2}^{P}\right)\right)\right\} \\
\min \left\{\min \left(\tilde{\lambda}_{I B_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I B_{2}}^{N}\left(u_{2}^{N}\right)\right), \min \left(\tilde{\lambda}_{I B_{1}}^{N}\left(u^{N}\right), \tilde{\lambda}_{I B_{2}}^{N}\left(v_{2}^{N}\right)\right)\right\}
\end{array}\right\}
$$

$$
=\left\{\begin{array}{l}
\max \left\{\left(\tilde{\lambda}_{I B_{1}}^{P} \times \tilde{\lambda}_{I B_{2}}^{P}\right)\left(u^{P}, u_{2}^{P}\right),\left(\left(\tilde{\lambda}_{I B_{1}}^{P} \times \tilde{\lambda}_{I B_{2}}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)\right\}, \\
\min \left\{\left(\tilde{\lambda}_{I B_{1}}^{N} \times \tilde{\lambda}_{I B_{2}}^{N}\right)\left(u^{N}, u_{2}^{N}\right),\left(\left(\tilde{\lambda}_{I B_{1}}^{N} \times \tilde{\lambda}_{I B_{2}}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right\}
\end{array}\right\}
$$

$$
\left(\tilde{\gamma}_{F C_{1} \times F C_{2}}^{P}\left(\left(u^{P}, u_{2}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right), \tilde{\gamma}_{F C_{1} \times F C_{2}}^{N}\left(\left(u^{N}, u_{2}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right)
$$

$$
=\left\{r^{P} \max \left\{\left(\tilde{\gamma}_{F A_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F C_{2}}^{P}\left(u_{2}{ }^{P}, v_{2}^{P}\right)\right)\right\}, \mathrm{r}^{\mathrm{N}} \min \left\{\left(\tilde{\gamma}_{F A_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F C_{2}}^{N}\left(u_{2}^{N}, v_{2}^{N}\right)\right)\right\}\right\}
$$

$$
\begin{aligned}
& \leq\left\{\begin{array}{ll}
r^{P} \max \left\{\left(\tilde{\gamma}_{F A_{1}}^{P}\left(u^{P}\right),\right.\right. & \left.\left.r^{P} \max \left(\tilde{\gamma}_{F A_{2}}^{P}\left(u_{2}{ }^{P}\right), \tilde{\gamma}_{F A_{2}}^{P}\left(v_{2}{ }^{P}\right)\right)\right)\right\}, \\
r^{N} \min \left\{\left(\tilde{\gamma}_{F A_{1}}^{N}\left(u^{N}\right),\right.\right. & \left.\left.r^{N} \max \left(\tilde{\gamma}_{F A_{2}}^{N}\left(u_{2}{ }^{N}\right), \tilde{\gamma}_{F A_{2}}^{N}\left(v_{2}{ }^{N}\right)\right)\right)\right\}
\end{array}\right\} \\
& =\left\{\begin{array}{l}
r^{P} \max \left\{r^{P} \max \left(\left(\tilde{\gamma}_{F A_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F A_{2}}^{P}\left(u_{2}{ }^{P}\right)\right), r^{P} \max \left(\tilde{\gamma}_{F A_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F A_{2}}^{P}\left(v_{2}{ }^{P}\right)\right)\right)\right\}, \\
r^{N} \min \left\{r^{N} \min \left(\left(\tilde{\gamma}_{F A_{1}}^{N}\left(u^{N}\right), \tilde{F}_{F A_{2}}^{N}\left(u_{2}{ }^{N}\right)\right), r^{N} \min \left(\tilde{\gamma}_{F A_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F A_{2}}^{N}\left(v_{2}{ }^{N}\right)\right)\right)\right\}
\end{array}\right\} \\
& =\left\{\begin{array}{l}
r^{P} \max \left\{\left(\tilde{\gamma}_{F A_{1}}^{P} \times \tilde{\gamma}_{F A_{2}}^{P}\right)\left(u^{P}, u_{2}^{P}\right),\left(\tilde{\gamma}_{F A_{1}}^{P} \times \tilde{\gamma}_{F A_{2}}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right\}, \\
r^{N} \min \left\{\left(\tilde{\gamma}_{F A_{1}}^{N} \times \tilde{\gamma}_{F A_{2}}^{N}\right)\left(u^{N}, u_{2}^{N}\right),\left(\tilde{\gamma}_{F A_{1}}^{N} \times \tilde{\gamma}_{F A_{2}}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right\}
\end{array}\right\} \\
& \left(\tilde{\gamma}_{F D_{1} \times F D_{2}}^{P}\left(\left(u^{P}, u_{2}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right), \tilde{\gamma}_{F D_{1} \times F D_{2}}^{N}\left(\left(u^{N}, u_{2}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right) \\
& =\left\{\min \left\{\left(\tilde{\gamma}_{F B_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F D_{2}}^{P}\left(u_{2}{ }^{P}, v_{2}^{P}\right)\right)\right\}, \max \left\{\left(\tilde{\gamma}_{F B_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F D_{2}}^{N}\left(u_{2}{ }^{N}, v_{2}^{N}\right)\right)\right\}\right. \\
& \leq\left\{\begin{array}{l}
\min \left\{\min \left(\tilde{\gamma}_{F B_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F B_{2}}^{P}\left(u_{2}{ }^{P}\right)\right), \min \left(\tilde{\gamma}_{F B_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F B_{2}}^{P}\left(v_{2}{ }^{P}\right)\right)\right\}, \\
\max \left\{\max \left(\tilde{\gamma}_{F B_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F B_{2}}^{N}\left(u_{2}{ }^{N}\right)\right), \max \left(\tilde{\gamma}_{F B_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F B_{2}}^{N}\left(u_{2}{ }^{N}\right)\right)\right\}
\end{array}\right\} \\
& =\left\{\begin{array}{c}
\min \left\{\min \left(\tilde{\gamma}_{F B_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F B_{2}}^{P}\left(u_{2}{ }^{P}\right)\right), \min \left(\tilde{\gamma}_{F B_{1}}^{P}\left(u^{P}\right), \tilde{\gamma}_{F B_{2}}^{P}\left(v_{2}^{P}\right)\right)\right\} \\
\max \left\{\max \left(\tilde{\gamma}_{F B_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F B_{2}}^{N}\left(u_{2}{ }^{N}\right)\right), \max \left(\tilde{\gamma}_{F B_{1}}^{N}\left(u^{N}\right), \tilde{\gamma}_{F B_{2}}^{N}\left(v_{2}{ }^{N}\right)\right)\right\}
\end{array}\right\} \\
& =\left\{\begin{array}{l}
\min \left\{\left(\tilde{\gamma}_{F B_{1}}^{P} \times \tilde{\gamma}_{F B_{2}}^{P}\right)\left(u^{P}, u_{2}^{P}\right),\left(\left(\tilde{\gamma}_{F B_{1}}^{P} \times \tilde{\gamma}_{F B_{2}}^{P}\right)\left(u^{P}, v_{2}^{P}\right)\right)\right\}, \\
\max \left\{\left(\tilde{\gamma}_{F B_{1}}^{N} \times \tilde{\gamma}_{F B_{2}}^{N}\right)\left(u^{N}, u_{2}^{N}\right),\left(\left(\tilde{\gamma}_{F B_{1}}^{N} \times \tilde{\gamma}_{F B_{2}}^{N}\right)\left(u^{N}, v_{2}^{N}\right)\right)\right\}
\end{array}\right\}
\end{aligned}
$$

Similarly we can prove it for $w \in V_{2}$ and $u_{1} v_{1} \in E_{1}$.
Proposition 3.6 Let $G_{1}=\left(\left(M_{1}{ }^{P}, N_{1}{ }^{P}\right),\left(M_{1}{ }^{N}, N_{1}{ }^{N}\right)\right)$ and $G_{2}=\left(\left(M_{2}{ }^{P}, N_{2}{ }^{P}\right),\left(M_{2}{ }^{N}, N_{2}{ }^{N}\right)\right)$ be two bipolar neutrosophic cubic fuzzy graphs, then the composition of two bipolar neutrosophic cubic fuzzy graphs is again a bipolar neutrosophic cubic fuzzy graph.

Example 3.7 Let $G_{1}=\left(\left(M_{1}{ }^{P}, N_{1}{ }^{P}\right),\left(M_{1}{ }^{N}, N_{1}{ }^{N}\right)\right)$ be a bipolar neutrosophic cubic fuzzy graph of $G_{1}^{*}=\left(V_{1}, E_{1}\right)$ where $v_{1}=\{u, v, w\}, E=\{u v, v w, u w\}$

$$
\begin{aligned}
&\{u,([0.1,0.1], 0.4),([0.3,0.4], 0.2),([0.5,0.6], 0.1)\} \\
& M_{1}{ }^{P}=\langle\{v,([0.1,0.3], 0.1),([0.4,0.5], 0.3),([0.1,0.1], 0.2)\}\rangle \\
&\{w,([0.2,0.3], 0.1),([0.1,0.2], 0.6),([0.3,0.5], 0.2)\} \\
&\{u v,([0.1,0.1], 0.4),([0.3,0.4], 0.2),([0.5,0.6], 0.1)\} \\
& N_{1}{ }^{P}=\langle\{v w,([0.1,0.3], 0.1),([0.1,0.2], 0.6),([0.3,0.5], 0.2)\}\rangle \\
&\{u w,([0.2,0.3], 0.1),([0.1,0.2], 0.6),([0.5,0.6], 0.1)\}
\end{aligned}
$$

$$
\begin{aligned}
&\{u,([-0.1,-0.1],-0.4),([-0.3,-0.4],-0.2),([-0.5,-0.6],-0.1)\} \\
& M_{1}{ }^{N}=\langle\{v,([-0.1,-0.3],-0.1),([-0.4,-0.5],-0.3),([-0.1,-0.1],-0.2)\}\rangle \\
&\{w,([-0.2,-0.3],-0.1),([-0.1,-0.2],-0.6),([-0.3,-0.5],-0.2)\} \\
&\{u v,([-0.1,-0.1],-0.4),([-0.3,-0.4],-0.2),([-0.5,-0.6],-0.1)\} \\
& N_{1}^{N}=\langle\{v w,([-0.1,-0.3],-0.1),([-0.1,-0.2],-0.6),([-0.3,-0.5],-0.2)\}\rangle \\
&\{u w,([-0.2,-0.3],-0.1),([-0.1,-0.2],-0.6),([-0.5,-0.6],-0.1)\}
\end{aligned}
$$

and $G_{2}=\left(\left(M_{2}{ }^{P}, N_{2}{ }^{P}\right),\left(M_{2}{ }^{N}, N_{2}{ }^{N}\right)\right)$ be a bipolar neutrosophic cubic fuzzy graph of $G_{2}^{*}=\left(V_{2}, E_{2}\right)$ where $V_{1}=\{a, v, c\}$ and $E_{2}=\{a b, b c, a c\}$

$$
\begin{gathered}
\{a,([0.6,0.7], 0.5),([0.1,0.3], 0.4),([0.2,0.3], 0.6)\} \\
M_{2}{ }^{P}=\langle\{b,([0.1,0.2], 0.3),([0.5,0.6], 0.2),([0.8,0.9], 0.4)\}\rangle \\
\{c,([0.3,0.4], 0.1),([0.2,0.3], 0.1),([0.5,0.6], 0.3)\} \\
\{a b,([0.1,0.2], 0.5),([0.1,0.3], 0.4),([0.8,0.9], 0.4)\} \\
N_{2}^{P}=\langle\{b c,([0.1,0.2], 0.3),([0.2,0.3], 0.2),([0.8,0.9], 0.3)\}\rangle \\
\{a c,([0.3,0.4], 0.5),([0.1,0.3], 0.4),([0.5,0.6], 0.3)\} \\
\{a,([-0.6,-0.7],-0.5),([-0.1,-0.3],-0.4),([-0.2,-0.3],-0.6)\} \\
M_{2}^{N}=\langle\{b,([-0.1,-0.2],-0.3),([-0.5,-0.6],-0.2),([-0.8,-0.9],-0.4)\}\rangle \\
\\
\{c,([-0.3,-0.4],-0.1),([-0.2,-0.3],-0.1),([-0.5,-0.6],-0.3)\} \\
\{a b,([-0.1,-0.2],-0.5),([-0.1,-0.3],-0.4),([-0.8,-0.9],-0.4)\} \\
N_{2}^{N}=\langle\{b c,([-0.1,-0.2],-0.3),([-0.2,-0.3],-0.2),([-0.8,-0.9],-0.3)\}\rangle \\
\\
\{a c,([-0.3,-0.4],-0.5),([-0.1,-0.3],-0.4),([-0.5,-0.6],-0.3)\}
\end{gathered}
$$

then $G_{1} \times G_{2}$ is a bipolar neutrosophic cubic fuzzy graph of $G_{1}^{*} \times G_{2}^{*}$,
where $V_{1} \times V_{2}=\{(u, a),(u, b),(u, c),(v, a),(v, b),(v, c),(w, a),(w, b),(w, c)\}$ and
$\{(u, a),([0.1,0.1], 0.5),([0.1,0.3], 0.4),([0.5,0.6], 0.1)\}$
$\{(u, b),([0.1,0.1], 0.4),([0.3,0.4], 0.2),([0.8,0.9], 0.1)\}$
$\{(u, c),([0.1,0.1], 0.6),([0.2,0.3], 0.2),([0.5,0.6], 0.1)\}$
$\{(v, a),([0.1,0.3], 0.5),([0.1,0.3], 0.4),([0.2,0.3], 0.2)\}$
$M_{1}^{P} \times M_{2}^{P}=\langle\{(v, b),([0.1,0.2], 0.3),([0.4,0.5], 0.3),([0.8,0.9], 0.2)\}\rangle$
$\{(v, c),([0.1,0.3], 0.1),([0.2,0.3], 0.3),([0.5,0.6], 0.2)\}$
$\{(w, a),([0.2,0.3], 0.5),([0.1,0.2], 0.6),([0.3,0.5], 0.2)\}$
$\{(w, b),([0.1,0.2], 0.3),([0.1,0.2], 0.6),([0.8,0.9], 0.2)\}$
$\{(w, c),([0.2,0.3], 0.1),([0.1,0.2], 0.6),([0.5,0.6], 0.2)\}$
$\{(u, a),([-0.1,-0.1],-0.5),([-0.1,-0.3],-0.4),([-0.5,-0.6],-0.1)\}$
$\{(u, b),([-0.1,-0.1],-0.4),([-0.3,-0.4],-0.2),([-0.8,-0.9],-0.1)\}$
$\{(u, c),([-0.1,-0.1],-0.6),([-0.2,-0.3],-0.2),([-0.5,-0.6],-0.1)\}$
$\{(v, a),([-0.1,-0.3],-0.5),([-0.1,-0.3],-0.4),([-0.2,-0.3],-0.2)\}$
$M_{1}^{N} \times M_{2}^{N}=\langle\{(v, b),([-0.1,-0.2],-0.3),([-0.4,-0.5],-0.3),([-0.8,-0.9],-0.2)\}\rangle$
$\{(v, c),([-0.1,-0.3],-0.1),([-0.2,-0.3],-0.3),([-0.5,-0.6],-0.2)\}$
$\{(w, a),([-0.2,-0.3],-0.5),([-0.1,-0.2],-0.6),([-0.3,-0.5],-0.2)\}$
$\{(w, b),([-0.1,-0.2],-0.3),([-0.1,-0.2],-0.6),([-0.8,-0.9],-0.2)\}$
$\{(w, c),([-0.2,-0.3],-0.1),([-0.1,-0.2],-0.6),([-0.5,-0.6],-0.2)\}$

$$
\left.\left.\left.\left.\begin{array}{r}
\{((u, a),(u, b)),([0.1,0.1], 0.5),([0.1,0.3], 0.4),([0.8,0.9], 0.1)\} \\
\{((u, b),(u, c)),([0.1,0.1], 0.4),([0.2,0.3], 0.2),([0.8,0.9], 0.1)\} \\
\{((u, a),(v, c)),([0.1,0.1], 0.4),([0.1,0.3], 0.4),([0.5,0.6], 0.2)\} \\
\{((v, a),(v, c)),([0.1,0.3], 0.5),([0.1,0.3], 0.4),([0.5,0.6], 0.2)\} \\
N_{1}^{P} \times N_{2}^{P}=\langle\{((v, a),(v, b)),([0.1,0.2], 0.5),([0.1,0.3], 0.4),([0.8,0.9], 0.2)\}\rangle \\
\{((v, b),(w, b)),([0.1,0.2], 0.3),([0.1,0.2], 0.6),([0.8,0.9], 0.2)\} \\
\{((w, b),(w, c)),([0.1,0.2], 0.3),([0.1,0.2], 0.6),([0.8,0.9], 0.2)\} \\
\{((w, a),(w, c)),([0.2,0.3], 0.5),([0.1,0.2], 0.6),([0.5,0.6], 0.2)\} \\
\{((u, a b),(w, a)),([0.1,0.1], 0.5),([0.1,0.2], 0.6),([0.5,0.6], 0.1)\} \\
\{((u, a),(u, b)),([-0.1,-0.1],-0.5),([-0.1,-0.3],-0.4),([-0.8,-0.9],-0.1)\} \\
\{((u, b),(u, c)),([-0.1,-0.1],-0.4),([-0.2,-0.3],-0.2),([-0.8,-0.9],-0.1)\} \\
\{((u, a),(v, c)),([-0.1,-0.1],-0.4),([-0.1,-0.3],-0.4),([-0.5,-0.6],-0.2)\} \\
\{((v, a),(v, c)),([-0.1,-0.3],-0.5),([-0.1,-0.3],-0.4),([-0.5,-0.6],-0.2)\} \\
N_{1}^{N} \times N_{2}^{N}=\langle
\end{array}\right\}((v, a),(v, b)),([-0.1,-0.2],-0.5),([-0.1,-0.3],-0.4),([-0.8,-0.9],-0.2)\right\}\right\rangle\right)
$$

Conclusion: In this paper ,introduced Cartesian product and composition of bipolar neutrosophic bipolar fuzzy graphs.we investigate some of their properties.

References:

Akram. M and Dudec.W.A, "Interval-valued fuzzy graphs", Computers and Mathematics with Applications, 61 (2011), 289-299.

Akram. M, Bipolar fuzzy graphs, Information Sciences, vol. 181, no.24, pp.5548-5564, 2011.
Akram. M, Nasir. M, Concepts of Interval-valued Neutrosophic Graphs. Int. J. Algebra Stat. 2017, 6, 22-41.

Akram. M, Rafique. S, Davvaz. B, New concepts in neutrosophic graphs with application. J. Appl. Math. comput. 2018, 57, 279 -302.

Bhattacharya. P, "Some remarks on fuzzy graphs", Pattern Recognition Letters, 6 (1987), 297-302.
Mordeson. J.N, Peng. C.S, "Operations on fuzzy graphs", Information Sciences, 79 (1994), 159-170.
Rosenfield. A, Fuzzy graphs, in: Zadeh. L.A, Fu. K.S, Shimura. M(Eds.), "Fuzzy Sets and Their Applications", Academic Press, New York, (1975), 77-95.

Rashmanlou. H and Pal. M, "Some properties of highly irregular interval-valued fuzzy graphs", World Applied Sciences Journal, 27(12)(2013), 1756-1773.

Rashmanlou. H, Samanta. S, Pal. S and Borzooei. A, "A study on bipolar fuzzy graphs", Journal of Intelligent and Fuzzy Systems, 28(2015), 571-580.

