

Science, Education and Innovations in the Context of Modern Problems

Issue 1, Vol. 9, 2026

RESEARCH ARTICLE

Quantile Regression Modelling of Gold Price Determinants in India

Parnvi Niganiya

Research Scholar

Department of Commerce, School of Commerce & Management; Dr. Harisingh Gour Vishwavidyalaya, Sagar (A Central University), Madhya Pradesh India

Garima Dohar

Research Scholar

Department of Commerce, School of Commerce & Management, Dr. Harisingh Gour Vishwavidyalaya, Sagar (A Central University), Madhya Pradesh India

**Akash Simoliya
(Correspondent)**

Research Scholar

Department of Economics, School of Humanities and Social Science, Dr. Harisingh Gour Vishwavidyalaya, Sagar (A Central University), Madhya Pradesh India

Issue web link

<https://imcra-az.org/archive/389-science-education-and-innovations-in-the-context-of-modern-problems-issue-1-vol-9-2026.html>

Keywords

Gold price, exchange rate and interest rate, Nifty 50, and inflation

Abstract

This study investigates the relationship between the price of gold and key economic indicators, namely the exchange rate, inflation, Nifty 50, and interest rate in the Indian context. The primary focus is on understanding how these variables influence the gold price across different quantiles, particularly in heteroscedasticity. This research focuses on analyzing the impact of the exchange rate, inflation, Nifty 50, and interest rate on the gold price and determining how these relationships vary across different quantiles of the gold price distribution. This analytical research examines factors influencing Indian gold prices from 2019-2020 to 2023-2024 using longitudinal data. Data is sourced from government reports, websites, and research papers. Employing quantile regression, the study investigates the impact of the Nifty 50, inflation, interest rates, and exchange rates on gold prices in India. It has been concluded that Exchange Rate and Interest across all quantiles, the exchange rate has a significantly positive impact, and the interest rate negatively impacts the gold price. Nifty 50 and Inflation do not significantly affect the gold price, as indicated by their P-values being higher than the significance level across all quantiles.

Citation

Parnvi N; Garima D; Akash S. (2026). Quantile Regression Modelling of Gold Price Determinants in India. *Science, Education and Innovations in the Context of Modern Problems*, 9(1), 235-244. <https://doi.org/10.56334/sei/9.1.22>

Licensed

© 2026 The Author(s). Published by Science, Education and Innovations in the context of modern problems (SEI) by IMCRA - International Meetings and Journals Research Association (Azerbaijan). This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

Received: 25.04.2025

Accepted: 27.11.2025

Published: 24.12.2025 (available online)

1. Introduction

Gold has emerged as a pivotal asset in the global economic landscape. Its price has surged dramatically, increasing by approximately 175% from Rs. 26,703 per ten grams in January 2014 to Rs. 73,390 by December 2023. This escalating value underscores the commodity's growing significance in business and geopolitical arenas. Historically recognized as a reliable hedge against inflation, gold's role has been extensively studied (Baber et al., 2013; M & Marisetty, 2023). Moreover, its price is intricately linked to exchange rate fluctuations, as the global commodity market is predominantly denominated in US dollars (Kavalis, 2006; Kannan & Dhal, 2008; Raza et al., 2021). Interest rates also substantially influence gold and financial market dynamics (Silva et al., 2023). Research has further demonstrated the negative impact of exchange rate and gold price volatility on stock market returns (Ali et al., 2020).

Gold has historically played a dual role in financial systems—both as a safe-haven asset and as a hedge against inflation and currency depreciation. In emerging economies like India, which is among the largest consumers of gold globally, the dynamics of gold price fluctuations are of significant interest to policymakers, investors, and researchers. Understanding the determinants of gold prices is particularly crucial because of their close linkages with macroeconomic variables such as exchange rates, inflation, stock markets, and global commodity prices. However, the relationship between these factors and gold prices is often nonlinear, asymmetric, and heterogeneous across different market conditions, making it important to explore the determinants using advanced econometric approaches such as quantile regression.

Several studies have highlighted the interconnectedness of gold with other financial and commodity markets. For instance, Arora, Daniel, and Aditya (2024) demonstrate that in India, gold prices exhibit intricate interdependencies with oil, stock, and forex markets, with macroeconomic shocks creating volatility spillovers across these sectors. Similarly, Asad et al. (2020) establish that the gold-oil exchange rate nexus is nonlinear and regime-dependent, showing that during the 2008 global financial crisis, asymmetric shocks to gold and oil prices significantly influenced the Bombay Stock Exchange, reflecting gold's importance as a stabilizing asset in turbulent times. Beyond the Indian context, Mohammed (2021) provides evidence from Ghana that oil price shocks can have differential effects on exchange rates, inflation, and monetary policy, underscoring the importance of considering multiple sources of shocks and their indirect influence on gold price behavior. At the global level, Davidson and Faff (1999) argue that gold acts as an "extra-market factor," influencing national market portfolios beyond standard market risks, thereby reinforcing its role as a unique financial instrument distinct from conventional asset classes.

The present study applies quantile regression modeling to analyze the determinants of gold prices in India, focusing on key macroeconomic and financial variables such as exchange rates, inflation, stock market indices, and interest rates. By examining the effects across different quantiles, this research seeks to capture the asymmetric and heterogeneous nature of these relationships, thereby providing deeper insights for policymakers, investors, and portfolio managers.

2. Literature review

Existing research has explored the multifaceted determinants of gold prices. Studies have identified varying relationships between gold and key macroeconomic indicators. While some research suggests a positive correlation between gold prices and inflation and the US dollar (Baber et al., 2013; M & Marisetty, 2023), others find this relationship to be weak or even negative (D'Silva et al., 2023). Exchange rate dynamics have also been linked to gold price movements. Several studies emphasize the significant impact of exchange rate fluctuations on gold prices, particularly the Indian rupee's strength against major currencies (Kannan & Dhal, 2008; Raza et al., 2021; M & Marisetty, 2023). However, the nature of this relationship can be complex, depending on the currency involved (Chen et al., 2017). The interplay between gold, exchange rates, and stock markets has also attracted scholarly attention. Research indicates that volatility in these markets can negatively impact stock market performance, as represented by indices like the BSE Sensex (Ali et al., 2020; Aftab et al., 2019; M & Marisetty, 2023). Nevertheless, the exact nature of the relationship between gold prices and stock market indices remains complex and requires further investigation.

Recent empirical studies have revealed important relationships between macroeconomic factors and gold price dynamics. Soeharjoto et al. (2020) established that currency exchange rates positively influence gold prices while interest rates demonstrate an inverse relationship, though inflation showed no statistically significant impact. Their findings suggest monetary authorities should prioritize exchange rate stability to maintain gold price equilibrium, with manufacturers potentially increasing value through product innovation and diversification. Singh (2013) demonstrates gold's investment viability, showing a consistent 12.27% annual growth that reinforces its status as a reliable hedge asset. However, the study notes that post-2011 market conditions, particularly Eurozone capital flight and dollar appreciation, temporarily reduced gold's traditional risk-hedging performance. Rengarajan & Varshini

(2024) provide a comparative institutional analysis of India's gold loan market, revealing distinct operational characteristics across financial sectors. Private banks emphasize processing efficiency at premium rates, public banks offer competitive rates with more stringent requirements, while NBFCs balance accessibility with higher costs - a trade-off that's increasingly attracting borrowers due to their responsive valuation methods and rapid disbursement. Kannan & Dhal's (2008) foundational work developed a comprehensive demand model for India's gold market, incorporating economic variables like real income, relative prices, and policy-sensitive indicators (interest rates, equity values, currency rates, taxation, and public expenditure). This established gold's dual role as both a consumption good and an investment asset in emerging economies. Advanced econometric analysis by Raza et al. (2021) identified asymmetric causal relationships in G7 nations, with exchange rate fluctuations particularly influencing gold prices during market extremes. These insights carry significant implications for monetary authorities and institutional investors managing currency-gold exposure. According to Wang & Lin (2024) introduces an innovative QRBiLSTM-MOALO hybrid model is introduced that achieves unprecedented prediction accuracy (AIS scores of -15.6240 and -11.5581 at 90%/95% confidence levels). This methodological advancement incorporates pandemic-related volatility factors, setting new standards for commodity price modeling in turbulent markets.

2.1 Objectives of the study

1. To examine the relation between gold prices, inflation, exchange rate, Nifty 50, and interest rates in India.
2. To analyze the impact of inflation, exchange rate, Nifty 50, and interest rates on gold prices in the Indian context.

2.2 Hypotheses of the study

H_0 : there is a significant relationship between gold prices, inflation, exchange rate, Nifty 50, and interest rates in India.

H_{0a} : there is a significant impact of inflation, exchange rate, Nifty 50, and interest rates on gold prices in India.

2.2.1 Sub-hypotheses

H_{0a1} : there is a significant impact of inflation on gold prices in India.

H_{0a2} : there is a significant impact of the exchange rate on gold prices in India.

H_{0a3} : there is a significant impact of Nifty 50 on gold prices in India.

H_{0a4} : there is a significant impact of interest rates on gold prices in India.

3. Research methodology

This analytical research examines factors influencing Indian gold prices from 2019-2020 to 2023-2024 using longitudinal data. Data is sourced from government reports, websites, and research papers. Employing quantile regression, the study investigates the impact of the Nifty 50, inflation, interest rates, and exchange rates on gold prices. This approach provides a detailed understanding of how these variables affect gold prices across different quantiles.

3.1 Limitations

The study is limited by its focus on the Indian market and the specific economic indicators chosen. The findings might not be generalizable to other markets or periods.

4. Interpretation and Results

4.1 Correlation Analysis

The correlation analysis indicates that there are several statistically significant relationships among gold prices, exchange rate, Nifty50 index, and interest rates in India. Strong and positive correlations were observed between

gold price and exchange rate ($r = 0.867$, $p < 0.01$), gold price and Nifty50 ($r = 0.780$, $p < 0.01$), exchange rate and Nifty50 ($r = 0.799$, $p < 0.01$), and exchange rate and interest rate ($r = 0.726$, $p < 0.01$). Moderate but significant associations were also found between gold price and interest rate, and between interest rate and Nifty50. Weak yet statistically significant correlations emerged between gold price and inflation, and between exchange rate and inflation. However, no statistically significant relationship was detected between inflation and interest rate or between inflation and Nifty50, suggesting that inflation behaves independently of these variables within the sample period.

In order to test the first hypothesis, the authors have used multiple correlation analysis in SPSS, and the following is the result.

Table I Correlation Matrix

		Correlations				
		goldprice	exchangerate	inflation	interesetrade	nifty50
goldprice	Pearson Correlation	1	.867**	.341**	.457**	.780**
	Sig. (2-tailed)		0.000	0.009	0.000	0.000
	N	60	60	58	57	60
exchangerate	Pearson Correlation	.867**	1	.260*	.726**	.799**
	Sig. (2-tailed)	0.000		0.048	0.000	0.000
	N	60	60	58	57	60
inflation	Pearson Correlation	.341**	.260*	1	-0.152	0.083
	Sig. (2-tailed)	0.009	0.048		0.269	0.537
	N	58	58	58	55	58
interesetrade	Pearson Correlation	.457**	.726**	-0.152	1	.526**
	Sig. (2-tailed)	0.000	0.000	0.269		0.000
	N	57	57	55	57	57
nifty50	Pearson Correlation	.780**	.799**	0.083	.526**	1
	Sig. (2-tailed)	0.000	0.000	0.537	0.000	
	N	60	60	58	57	60

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

According to the table above, the first null hypothesis is rejected, indicating a significant relationship between the variables, except for the two pairs: Inflation-Interest rate and Inflation-Nifty 50.

Therefore, the null hypothesis of no relationship is rejected for most variable pairs, and the findings partially support the hypothesis that there is a significant relationship between gold prices, inflation, exchange rate, Nifty50, and interest rates in India, except for inflation's non-significant links to interest rates and the stock market.

4.2 Empirical Analysis

Based on the Variance Inflation Factor (VIF) test results, the model demonstrates moderate multicollinearity, with all predictor variables (exchange rate, Nifty50, and interest rate) showing VIF values above 2 but below the common critical threshold of 5. The mean VIF of 2.94 confirms that multicollinearity is present to a degree that warrants attention but is not severe enough to critically undermine the regression model or necessitate the removal of variables.

Table II: Variance inflation factor

Variable	VIF	1/VIF
exchangerate	6.59	0.151852
nifty50	3.76	0.266241
interesetr~ e	2.73	0.366496
inflation	1.33	0.753614
Mean VIF	3.60	

Source: STATA Output

None of the variables cross the critical VIF value of 10 (or even the stricter cutoff of 5 used in some studies). Therefore, your regression model does not suffer from problematic multicollinearity, and the independent variables can be reliably used to explain gold price determinants.

According to the Breusch-Pagan test results showing a statistically significant p-value of 0.0351, we reject the null hypothesis of constant variance and conclude that heteroscedasticity is present in the regression model, indicating that the error variance systematically changes with the fitted values of gold price.

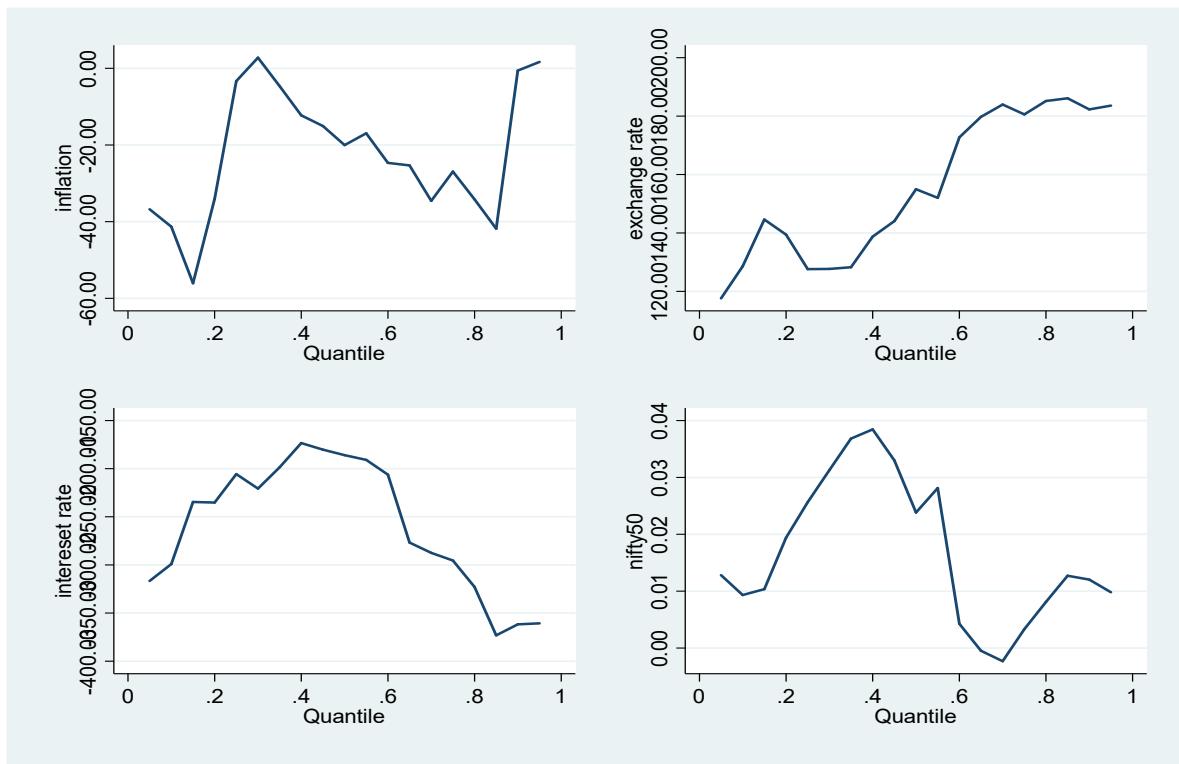
There are five variables, namely price of Gold (the outcome variable), exchange rate, inflation, Nifty 50, and Interest rate are the predictor variables. As mentioned above, the data is collected for the preceding 5 years. The data is found to bear heteroscedasticity as the Pagon test verifies that the data is not homogeneous, as the p-value is 0.0351, which is less than the significance level of 0.05. That is why the authors used Quantile Regression to study the relationship between the price of gold and the predictor variables.

The model employed for the study is:

$$Q_y(\tau) = \beta_0(\tau) + \beta_1(\tau)N_i + \beta_2(\tau)I + \beta_3(\tau)R + \beta_4(\tau)E + \epsilon(\tau) \dots \dots \dots (I)$$

$Q_y(\tau)$ is the quantile τ of the gold price at time t ; $\beta_0(\tau)$ is the intercept for quantile τ ;

$\beta_1(\tau)$, $\beta_2(\tau)$, $\beta_3(\tau)$, and $\beta_4(\tau)$ are the coefficients for Nifty 50, inflation, interest rate, and exchange rate, respectively, for quantile τ ; $\epsilon(\tau)$ is the error term for quantile τ .


Table III: Quantile Regression Results

Quantiles	Quantile (0.10)		Quantile (0.25)		Quantile (0.50)		Quantile (0.75)		Quantile (0.90)	
	(I)		(II)		(III)		(IV)		(V)	
gold price	Coef.	t (P>t)								
exchange rate	128.6181	4.19 (0.000)	127.6342	3.83 (0.000)	154.9966	5.81 (0.000)	180.5958	6.33 (0.000)	182.3175	7.19 (0.000)
inflation	-41.31078	-0.77 (0.444)	-3.321521	-0.06 (0.955)	-20.02422	-0.43 (0.669)	-26.94634	-0.54 (0.590)	-.5812002	-0.01 (0.990)
nifty50	.0093297	0.30 (0.763)	.0256494	0.77 (0.445)	.0238276	0.89 (0.376)	.0033303	0.12 (0.908)	.0120417	0.47 (0.637)
interest rate	-299.1012	-3.54 (0.001)	-205.6761	-2.24 (0.029)	-185.9367	-2.53 (0.015)	-295.4037	-3.76 (0.000)	-361.7668	-5.18 (0.000)
_cons	-4140.865	-2.62 (0.011)	-4846.219	-2.83 (0.007)	-6750.825	-4.92 (0.000)	-7635.599	-5.21 (0.000)	-7552.552	-5.80 (0.000)

Source: STATA Output

Quantile regression considers the extreme values to reveal the impact of the predictor on the outcome. Table no. III at $Q=0.10$ depicts that the price at the lower quantile is significantly affected by the exchange rate and interest rate, as their $(P>t)$ is less than the significance level. With an additional increase in the exchange rate, the price of gold rises by ₹128.618, which is the coefficient of the exchange rate that shows the magnitude change among the quantiles, but as the coefficient of interest rate is negative implies that an additional increase in the interest rate leads to a fall in the prices of gold by ₹299.1012, which is depicted in Graph I of the interest rate, which starts from the negative y-axis. The reason behind the converse association of exchange rate and interest rate with gold price the outcome variable can be that since U.S. dollars are usually used to trade gold, a rise in the exchange rate—that is, a decline in the value of the local currency in relation to the dollar—raises the price of gold in local currency and hence increases investor demand. While the other two variables, Nifty 50 and inflation, are not significant predictors of the gold price, as their $(P>t)$ is more than the significance level. Similarly, the effect of the result as depicted by column II in Table II is almost the same as that of Column I. So, both the lower quantiles have the same impact on the gold price, but the magnitude of change is different; the positive impact has been improved, while the negative impact has been reduced, and that's why the graph of all four quantiles under the lower quantile is improving overall.

Graph I

Source: STATA Output

At the median quantile 0.50, the exchange rate and interest rate are again significant predictors of the gold price by ₹154 and a fall in price by ₹185, respectively, due to an additional increase in the variable units, respectively. While the Nifty 50 and inflation are not significant predictors of the gold price. At the higher quantiles 0.75 and 0.90, the exchange rate is again a positive significant predictor, and the interest rate is a negative significant predictor of the gold price.

While analyzing Graph I, the impact of the exchange rate is positive at lower quantiles of gold price, between 0.20-0.30 quantiles, the impact remains stable, after that it starts increasing and reaches the peak at the higher quantiles of gold price. The exchange rate is a significant predictor.

The impact of the interest rate is negative across all the quantiles, implying a fall in gold price due to an increase in interest rate, but the magnitude of the fall in price starts falling at higher quantiles. The magnitude keeps on increasing till the 0.30 quantile and starts dropping gradually after the 0.40 quantile, and reaches a minimum at the extreme level of the quantile of the gold price. This implies that higher interest rates are associated with lower gold prices across all the quantiles. It implies that lower gold quantiles are more sensitive to changes in the interest rate. A decline in the demand for gold and consequently lower prices could result from investors preferring interest-bearing bonds or savings accounts. The robust and stable negative correlation underscores the noteworthy impact of interest rates on the price of gold. Nifty 50 starts with a positive impact before the 0.25 quantile and reaches the peak till the median quantiles and gradually lowers at a higher quantile, say 0.70. After a short peak, it again starts falling at extreme quantiles. In this way, the second objective of the study is achieved.

4.3 Results

H0: There exists a significant relationship between gold prices, inflation, exchange rate, Nifty50, and interest rates in India. Correlation analysis confirmed strong positive links of gold prices with the exchange rate and Nifty50, and moderate associations with interest rates, while inflation showed a weak but significant influence.

H0₁: Inflation, exchange rate, Nifty50, and interest rates significantly impact gold prices in India. Quantile regression established exchange rate (positive) and interest rates (negative) as consistent predictors across quantiles, while Nifty50 and inflation showed no significant impact.

H0₂: Inflation does not have a significant impact on gold prices, as both correlation and quantile regression results indicate weak or insignificant influence.

H0₃: The exchange rate has a significant and positive impact on gold prices across all quantiles, with stronger effects at higher quantiles.

H0₄: Nifty50 does not significantly influence gold prices in the regression model, despite showing a positive correlation with gold prices.

H0₅: Interest rates exert a significant and negative impact on gold prices across all quantiles, with stronger sensitivity observed at lower quantiles.

5. Conclusion

The quantile regression analysis establishes that exchange rates and interest rates are the primary determinants of gold prices in India, with the former exerting a positive effect and the latter a negative effect across quantiles. The magnitude of these impacts varies, highlighting gold's asymmetric sensitivity to macroeconomic conditions. In contrast, inflation and the Nifty50 index show no significant influence on gold prices during the study period, suggesting their limited role as predictors in this context. Overall, the findings reject the null hypothesis and confirm that variations in key macroeconomic and financial factors critically shape gold price dynamics in India.

Statements and Declarations

Author(s) declaration

The author(s) declares that the manuscript has not been published elsewhere and is not under consideration by any other journal.

Ethical considerations

Not applicable. The study is based on secondary data sources and does not involve human participants or animals.

Declaration of conflicting interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding statement

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

1. Aftab, M., Shah, S. Z. A., & Ismail, I. (2019). Does Gold Act as a Hedge or a Safe Haven against Equity and Currency in Asia? *Global Business Review*, 20(1), 105–118. <https://doi.org/10.1177/0972150918803993>
2. Ali, R., Mangla, I. U., Rehman, R. U., Xue, W., Naseem, M. A., & Ahmad, M. I. (2020). Exchange rate, gold price, and stock market nexus: A quantile regression approach. *Risks*, 8(3), 1–16. <https://doi.org/10.3390/risks8030086>
3. Arora, B., Daniel, J., & Aditya, A. (2024). Market dynamics in India: Analysing interconnections among oil, stocks, gold and forex markets. *Cogent Economics & Finance*, *12*(1), 2431528. <https://doi.org/10.1080/23322039.2024.2431528>
4. Asad, M., Tabash, M. I., Sheikh, U. A., Al-Muhanadi, M. M., & Ahmad, Z. (2021). Gold-oil-exchange rate volatility, Bombay stock exchange, and global financial contagion 2008: Application of NARDL model with

dynamic multipliers for evidence beyond symmetry. *Cogent Business & Management*, *8*(1), 1849889. <https://doi.org/10.1080/23311975.2020.1849889>

- 5. Baber, P., Baber, R., & Thomas, G. (2013). Factors affecting gold prices: a case study of India. *National Conference on Evolving Paradigms in Manufacturing and Service Sectors*.
- 6. Barson, Z., Junior, P. O., Adam, A. M., & Asafo-Adjei, E. (2022). Connectedness between Gold and Cryptocurrencies in the COVID-19 Pandemic: A Frequency-Dependent Asymmetric and Causality Analysis. *Complexity*, 1-17. <https://doi.org/10.1155/2022/7648085>
- 7. Chen, K., Wang, M., & Pan, Y. (2017). Revisiting the price of gold and exchange rates with a quantile regression model. *International Journal of Development and Sustainability*, 6(3), 130-148.
- 8. Christian Pierdzioch, Marian Risse and Sebastian Rohloff, (2014), The international business cycle and gold-price fluctuations, *The Quarterly Review of Economics and Finance*, 54, (2), 292-305.
- 9. Conlon, Thomas & Lucey, Brian & Uddin, Gazi. (2018). Is gold a hedge against inflation? A wavelet time-scale perspective. *Review of Quantitative Finance and Accounting*, 51. 10.1007/s11156-017-0672-7.
- 10. C V, Shobha. (2017). A study on Gold as a Safer Investment Alternative among Small and Medium Investors with Special Reference to Kozhikode District. *International Journal of Research - GRANTHAALAYAH*. 5. 27-45.
- 11. Daphne, christalin. (2023). An analysis of Gold Prices trends in India since 1964-2023 and application of the ARIMA model in forecasting Gold Prices since 2024-2024. *International Journal of Scientific Development and Research*, 8, 19 - 48.
- 12. Davidson, S., & Faff, R. (1999). Extra-market sensitivity to a gold price factor: Evidence from national market portfolios. *Studies in Economics and Econometrics*, *23*(3), 1-14. <https://doi.org/10.1080/03796205.1999.12129138>
- 13. Dichtl, Hubert, (2020), Forecasting excess returns of the gold market: Can we learn from stock market predictions? *Journal of Commodity Markets*, 19, (C)
- 14. D'Silva, A. N. V., Bhat, B., & Raghavendra, A. (2023). The impact of changes in the Inflation Rate on Gold, Silver, and Interest Rates. *International Journal of Novel Research and Development*, 8(9), 479-492.
- 15. Guha, B., & Bandyopadhyay, G. (2015). Gold Price Forecasting Using an ARIMA Model.
- 16. Ismail, Z., Yahya, A., & Shabri, A. (2009). Forecasting gold prices using the multiple linear regression method. *American Journal of Applied Sciences*, 6(8).
- 17. Jain, A. (2021). Relationship between Gold and Stock Market post-2008 crisis: A study in the Indian context. *International Journal of Social Science and Economic Research*, 6(9). <https://doi.org/10.46609/IJSER.2021.v06i09.024>
- 18. Kannan, R., & Dhal, S. (2008). India's demand for gold: some issues for economic development and macroeconomic policy. *Indian Journal of Economics & Business*, 7(1), 107-128.
- 19. Kavalis, N. (2006), Commodity Prices and the Influence of the US Dollar, A Report Published by World Gold Council and GFMS Ltd, London, January.
- 20. Kuntara Pukthuanthong and Richard Roll, (2011), Gold and the Dollar (and the Euro, Pound, and Yen), *Journal of Banking & Finance*, 35, (8), 2070-2083
- 21. Malik, V., Sharma, M., Bandyopadhyay, S., & Raza, A. I. (2023). *Gold Industry India: Growth and Prospects*.
- 22. Mainardi, S. (1995). The Influence of the Gold Price on Exchange Rates in South Africa. *Studies in Economics and Econometrics*, 19(1). <https://doi.org/10.1080/03796205.1995.1212906>
- 23. Mohammed, M. (2021). The differential effects of oil price shocks on exchange rate, inflation, and monetary policy rate in Ghana. *Studies in Economics and Econometrics*, *45*(1), 23-41. <https://doi.org/10.1080/03796205.2021.1956168>
- 24. Nisarga M., & Marisetty, N. (2023). A Study on Various Factors Impacting the Gold Price in India. *Asian Journal of Economics, Business and Accounting*, 23(20), 254-265. <https://doi.org/10.9734/ajeba/2023/v23i201109>
- 25. O'Connor, F. A., Lucey, B. M., Batten, J. A., & Baur, D. G. (2015). The financial economics of gold - A survey. *International Review of Financial Analysis*, 41, 186-205. <https://doi.org/10.1016/j.irfa.2015.07.005>
- 26. Painter, M. J. (2011). Is Farmland as Good as Gold? *Economics Research International*, 1-8. <https://doi.org/10.1155/2011/924708>
- 27. Patel, Sanveg. (2013). Gold as a Strategic Prophecy against Inflation and Exchange Rate. *Business Perspectives and Research*, 2, 59-68.
- 28. Pradeep, K. V., & Karunakaran, N. (2022). Gold price dynamics in India: A pre-post-liberalisation comparison. *Journal of Management Research and Analysis*, 9(2), 102-107. <https://doi.org/10.18231/j.jmra.2022.020>
- 29. Quynh Nga Nguyen, Rihab Bedoui, Najemeddine Majdoub, Khaled Guesmi, Julien Chevallier. (2020). Hedging and safe-haven characteristics of Gold against currencies: An investigation based on multivariate dynamic copula theory. *Resources Policy*, 68.

30. Raza, S. A., Shah, N., Ali, M., & Shahbaz, M. (2021). Do Exchange Rate Fluctuations Influence Gold Prices in G7 Countries? New Insights from a Nonparametric Causality-in-Quantiles Test. *Zagreb International Review of Economics and Business*, 24(2), 37–57. <https://doi.org/10.2478/zireb-2021-0010>
31. Rösch, A., & Schmidbauer, H. (2012). Impact of festivals on gold price expectation and volatility. In *International Institute for Forecasters, Proceedings of the 32nd International Symposium on Forecasting ISF*.
32. Sailaja, V.N. Akhil Kumar, V & Padmini Kota, V.S. (2022). A Study on Macroeconomic variables and Their Impact on gold price in India. *Academy of Marketing Studies Journal*, 26(5), 1-16.
33. Singh, P. (2013). Gold Prices in India: Study of Trends and Patterns. *International Journal of Innovations in Engineering and Technology (IJIET)*, 2(4), 345–351.
34. Soeharjoto, Debbie, A. T., Hariyanti, D., & Tajib, E. (2020). Macro Economics Effect on Gold Price Change in Indonesia. *International Journal of Advanced Science and Technology*, 29(05), 437–446.
35. Srinivasan, P., & Ibrahim, P. (2012). Price discovery and asymmetric volatility spillovers in Indian spot-futures gold markets. *International Journal of Economic Sciences and Applied Research*, 5(3), 65-80.
36. Surendra, J., Rajyalakshmi, K., Apparao, B.V., Charankumar, G.R., & Dasore, A. (2021). Forecast and trend analysis of gold prices in India using an autoregressive integrated moving average model. *Journal of Mathematical and Computational Science*.
37. Toraman, C., Basarir, C., & Bayramoglu, M. F. (2011). Determination of factors affecting the price of gold: A study of the MGARCH model. *Business and economics research journal*, 2(4), 37-50.
38. V, R., & M, V. (2024). A comparative study on gold loans offered by Private sector Banks, Public Sector Banks, and Non-Banking Financial Companies. *International Journal of Creative Research Thoughts*, 12(4), 2320–2882.
39. Wang, Y., & Lin, T. (2024). A Novel Deterministic Probabilistic Forecasting Framework for Gold Price with a New Pandemic Index Based on Quantile Regression Deep Learning and Multi-Objective Optimization. *Mathematics*, 12(1), 1–21.
40. Yang, Lu & Hamori, Shigeyuki. (2014). Gold prices and exchange rates: A time-varying copula analysis. *Applied Financial Economics*, 24.